একটি সমীকরণ বা সমস্যা লিখুন
ক্যামেরা ইনপুটটি চিহ্নিত করা হয়নি!

সমাধান - গুণনফল দ্বারা দ্বিঘাত সমীকরণ সমাধান করা

নিখুঁত রূপ: x1=56,x2=-56
x_1=\frac{5}{6}, x_2=-\frac{5}{6}
দশমিক ফর্ম: x1=0.833,x2=0.833
x_1=0.833, x_2=-0.833
গুণিত রূপে সমীকরণ: (6x5)(6x+5)=0
(6x-5)(6x+5)=0

ধাপে ধাপে ব্যাখ্যা

এটি কেন শিখব?

তাদের সাধারণ ফাংশনে, দ্বিঘাত সমীকরণ বৃত্ত, উপবৃত্ত এবং প্রবালয় মতই আকার ব্যাখ্যা করে। এই আকৃতি, আবার, একটি ফুটবল খেলোয়াড় দ্বারা পতিত বল বা একটি ক্যানন থেকে নিক্ষিপ্ত প্রহরের মতো একটি ক্রিয়াপত্রের বক্রপথ অনুমান করতে ব্যবহার করা যেতে পারে। আমরা স্বতন্ত্র জ্যোতির্বিজ্ঞানে আঙ্গুল দিচ্ছি, যেখানে দ্বিঘাত সমীকরণ ব্যবহার করে গ্রহদের আবরণ ইলিপ্সি, নন বৃত্তাকার। একটি ক্রিয়াপত্র প্রের্ণা এবং গতি পেতে যখন সে চলার থেমে যায়, তখন দ্বিঘাত সমীকরণ তা কিভাবে ত্বরণ ছিল তা গণনা করতে পারে। এরকম তথ্য এটোমোবাইল শিল্প হাওয়ায় সংঘর্ষ রোধোদ্য ব্রেক নকলবন্তি। অনেক শিল্প দ্বিঘাত সমীকরণ ব্যবহার করে তাদের পণ্যের জীবনকাল এবং নিরাপত্তি অনুমান করে এবং তাই তাদের পণ্য উন্নত করে।

সর্বশেষ সম্পর্কিত ড্রিল সমাধান করা হয়েছে