একটি সমীকরণ বা সমস্যা লিখুন
ক্যামেরা ইনপুটটি চিহ্নিত করা হয়নি!

সমাধান - জ্যামিতিক ধারা

সাধারণ অনুপাত হল: r=7
r=-7
এই সিরিজের যোগফল হল: s=600
s=-600
এই সিরিজের সাধারণ রূপ হল: an=27n1
a_n=2*-7^(n-1)
এই সিরিজের এনথ পদ হল: 2,14,98,686,4802,33614,235298,1647086,11529602,80707214
2,-14,98,-686,4802,-33614,235298,-1647086,11529602,-80707214

সমাধানের অন্যান্য উপায়

জ্যামিতিক ধারা

ধাপে ধাপে ব্যাখ্যা

1. সাধারণ অনুপাত খুজে নিন

এর আগের পদ দ্বারা কোনও পদ বিভাগ করে সাধারণ অনুপাত খুঁজে পান:

a2a1=142=7

a3a2=9814=7

a4a3=68698=7

ধারার সাধারণ অনুপাত (r) স্থির এবং কোনও দুই ধারাবাহিক পদের ভাগফল।
r=7

2. যোগফল খুঁজুন

5 অতিরিক্ত steps

sn=a*((1-rn)/(1-r))

সিরিজের সমষ্টি খুঁজে পেতে, প্রথম পদ: a=2, সাধারণ অনুপাত: r=7, এবং উপাদান সংখ্যা n=4 জ্যামিতিক সিরিজ সমষ্টি সূত্রের মধ্যে প্লাগ করুন:

s4=2*((1--74)/(1--7))

s4=2*((1-2401)/(1--7))

s4=2*(-2400/(1--7))

s4=2*(-2400/8)

s4=2300

s4=600

3. সাধারণ রূপ খুঁজুন

an=arn1

সিরিজের সাধারণ রূপ খুঁজে পেতে, প্রথম পদ: a=2 এবং সাধারণ অনুপাত: r=7 জ্যামিতিক সিরিজের সূত্রে প্লাগ করুন:

an=27n1

4. N তম পদ খুঁজুন

সাধারণ রূপ ব্যবহার করে nth পদ খুঁজে পাওয়া

a1=2

a2=a1·rn1=2721=271=27=14

a3=a1·rn1=2731=272=249=98

a4=a1·rn1=2741=273=2343=686

a5=a1·rn1=2751=274=22401=4802

a6=a1·rn1=2761=275=216807=33614

a7=a1·rn1=2771=276=2117649=235298

a8=a1·rn1=2781=277=2823543=1647086

a9=a1·rn1=2791=278=25764801=11529602

a10=a1·rn1=27101=279=240353607=80707214

এটি কেন শিখব?

জ্যামিতিক ধারাগুলি গণিত, পদার্থবিদ্যা, প্রকৌশল, জীববিজ্ঞান, অর্থনীতি, কম্পিউটার বিজ্ঞান, অর্থায়ন, এবং আরও অনেক ধারণায় ব্যাখ্যা দেওয়া হয় সর্বসাধারণভাবে, ফলে তারা আমাদের টুলকিটে একটি আত্যন্ত প্রয়োজনীয় সরঞ্জাম হয়ে ওঠে। জ্যামিতিক ধারার সবচেয়ে সাধারণ প্রয়োগগুলির মধ্যে, উদাহরণস্বরূপ, প্রাপ্ত বা অপরিশোধিত সমষ্টিগত সুদ গণনা করা হয়, এটি সর্বাধিকতম অর্থায়নের সাথে জড়িত কার্যকলাপ যা অনেক টাকা উপার্জন বা হারাতে পারে! অন্যান্য প্রয়োগগুলির মধ্যে সম্ভাবনা গণনা করা, সময়ের পর পর রেডিওয়েক্টিভতার পরিমাণ পরিমাপ করা এবং ভবন নকশা করা অন্তর্ভুক্ত, তবে অবশ্যই এগুলি সীমিত নয়।

শব্দগুচ্ছ এবং বিষয়াবলি