একটি সমীকরণ বা সমস্যা লিখুন
ক্যামেরা ইনপুটটি চিহ্নিত করা হয়নি!

সমাধান - দ্বিঘাত অসমতার মিলন করা দ্বিঘাত সূত্রের ব্যবহার

সমাধান: 3<x<7
-3<x<7
অন্তর্বর্তী নোটেশন: x(3;7)
x∈(-3;7)

ধাপে ধাপে ব্যাখ্যা

1. দ্বিঘাত অসমতার গুণাংক a, bc নির্ধারণ করুন

আমাদের অসমতার সহগণিতকগুলি, 1x2+4x+21>0, হ'ল:

a = -1

b = 4

c = 21

2. এই সহগণিতকগুলি দ্বিঘাত সূত্রে প্রবেশ করান

দ্বিঘাত সমীকরণের মূল খুঁজতে, এর পরিশোধন (a, b এবং c) দ্বিঘাত সূত্রে প্লাগ করুন:

x=(-b±sqrt(b2-4ac))/(2a)

a=1
b=4
c=21

x=(-4±sqrt(42-4*-1*21))/(2*-1)

ঘাতাংক এবং বর্গমূল সরল করুন

x=(-4±sqrt(16-4*-1*21))/(2*-1)

বাংলা থেকে ডানে যে কোনও গুণাঙ্ক বা বিভাজন সম্পাদন করা:

x=(-4±sqrt(16--4*21))/(2*-1)

x=(-4±sqrt(16--84))/(2*-1)

বাম থেকে ডান পর্যায়ক্রমে যেই কোনো যোগ অথবা বিয়োগ নির্ণয় করুন।

x=(-4±sqrt(16+84))/(2*-1)

x=(-4±sqrt(100))/(2*-1)

বাংলা থেকে ডানে যে কোনও গুণাঙ্ক বা বিভাজন সম্পাদন করা:

x=(-4±sqrt(100))/(-2)

ফলাফল পেতে:

x=(-4±sqrt(100))/(-2)

3. বর্গমূল (100) সরলীকরণ করুন

100 সরলীকরণ করে তার মৌলিক ঘটক খুঁজুন:

<math>100</math> এর মৌলিক গুণনীয়কের ট্রি দেখুন:

100 এর মৌলিক ঘটকী বিভাজন 2252 হল

মৌলদলানসমূহ লিখুন:

100=2·2·5·5

মৌলদলানসমূহ দ্বিগুণ সমূহে গ্রুপ করুন এবং এক্সপোনেন্ট রূপে পুনর্লিখন করুন:

2·2·5·5=22·52

আরও সরল করার জন্য নিয়ম (x2)=x ব্যবহার করুন:

22·52=2·5

বাংলা থেকে ডানে যে কোনও গুণাঙ্ক বা বিভাজন সম্পাদন করা:

2·5=10

4. x এর জন্য সমীকরণ সমাধান করুন

x=(-4±10)/(-2)

উপরোক্ত সংকেত ± দুটি মূল সম্ভব বলে দেখায়।

সমীকরণগুলো পৃথক করুন:
x1=(-4+10)/(-2) এবং x2=(-4-10)/(-2)

x1=(-4+10)/(-2)

বাম থেকে ডান পর্যায়ক্রমে যেই কোনো যোগ অথবা বিয়োগ নির্ণয় করুন।

x1=(-4+10)/(-2)

x1=(6)/(-2)

বাংলা থেকে ডানে যে কোনও গুণাঙ্ক বা বিভাজন সম্পাদন করা:

x1=62

x1=3

x2=(-4-10)/(-2)

বাম থেকে ডান পর্যায়ক্রমে যেই কোনো যোগ অথবা বিয়োগ নির্ণয় করুন।

x2=(-4-10)/(-2)

x2=(-14)/(-2)

বাংলা থেকে ডানে যে কোনও গুণাঙ্ক বা বিভাজন সম্পাদন করা:

x2=142

x2=7

5. মধ্যবিরতি খুঁজুন

একটি দ্বিঘাত অসামতার মধ্যবিরতি খুঁজে পেতে, আমরা তার প্যারাবোলা খুঁজে পেতে শুরু করি।

প্যারাবোলার মূলগুলি (যেখানে এটি এক্স-অক্ষের সাথে মিলিত হয়) হল: -3, 7.

যেহেতু a সহগ নেতিবাচক (a=-1), এটি একটি "নেতিবাচক" দ্বিঘাত অসমতা এবং প্যারাবোলা নিচের দিকে নির্দেশ করে, বেদনার মত!

যদি অসমতা চিহ্ন ≤ বা ≥ হয়, তবে মধ্যবিরতিগুলি মূলগুলি অন্তর্ভুক্ত করে এবং আমরা একটি স্থির রেখা ব্যবহার করি। যদি অসমতা চিহ্ন < বা > হয়, তবে মধ্যবিরতিগুলি মূলগুলি অন্তর্ভুক্ত করে না এবং আমরা একটি ছিটিয়ে রেখা ব্যবহার করি।

6. সঠিক অন্তর (সমাধান) চয়ন করুন

যেহেতু 1x2+4x+21>0 এ একটি > অসমতা চিহ্ন রয়েছে, আমরা x-অক্ষের উপরে প্যারাবোলার বিভাগগুলির সন্ধান দিই।

সমাধান:

অন্তর চিহ্নিতকরণ:

এটি কেন শিখব?

যখন দ্বিঘাত সমীকরণগুলি কম্পাসের পথগুলি এবং তাদের মধ্যে বিন্দুগুলি বর্ণনা করে, তখন দ্বিঘাত অসমতারা এই কম্পাসের মধ্যে এবং এদের বাইরে বিস্তৃত এলাকাগুলি এবং তারা যে পরিসরগুলি কভার করে তা বর্ণনা করে। অর্থাৎ, যদি দ্বিঘাত সমীকরণগুলি আমাদের সীমানা কোথায় সেটা বলে থাকে, তবে দ্বিঘাত অসমতারা আমাদের বুঝানোর ক্ষেত্রে সেই সীমানার সাপেক্ষে আমাদের কী দৃষ্টিকোণ থাকা উচিত তা আমাদের বুঝায়। আরও প্রায়শই, দ্বিঘাত অসমতা শক্তিশালী সফ্টওয়্যার তৈরি করার জন্য জটিল অ্যালগরিদম তৈরি করতে এবং কিভাবে পরিবর্তনগুলি, যেমন মুদ্রাস্ফীতি, সময়ের সাথে ঘটে তা ট্র্যাক করতে ব্যবহৃত হয়।

শব্দগুচ্ছ এবং বিষয়াবলি