একটি সমীকরণ বা সমস্যা লিখুন
ক্যামেরা ইনপুটটি চিহ্নিত করা হয়নি!

সমাধান - পরিসংখ্যান

সমঃ 57
57
গাণিতিক গড়: x̄=6.333
x̄=6.333
মধ্যমান: 7
7
পরিসরণ: 7
7
বিচ্যুতি: s2=4.750
s^2=4.750
মানক বিচলন: s=2.179
s=2.179

সমাধানের অন্যান্য উপায়

পরিসংখ্যান

ধাপে ধাপে ব্যাখ্যা

1. যোগফল খুঁজে বের করুন

সমস্ত সংখ্যাটি যোগ করুন:

6+6+7+2+7+8+8+4+9=57

যোগফল হলো 57

2. গড় খুঁজে বের করুন

সমষ্টি সংখ্যা দ্বারা যোগফল ভাগ করুন:

যোগফল
57
সংখ্যা সমষ্টি
9

x̄=193=6.333

গড় 6.333

3. মধ্যমান খুঁজে বের করুন

সংখ্যাগুলোকে ঊর্ধ্বারোহী ক্রমে সাজান:
2,4,6,6,7,7,8,8,9

পদ সংখ্যা গণনা করুন:
(9) টি পদ রয়েছে

যেহেতু পদের সংখ্যা বিজোড়, মাঝখানের পদটি হল মধ্যমান:
2,4,6,6,7,7,8,8,9

মধ্যমান সমান 7

4. পরিসর খুঁজে বের করুন

পরিসর খুঁজতে, সর্বাধিক মান থেকে সর্বনিম্ন মান বিয়োগ করুন.

সর্বাধিক মান 9
সর্বনিম্ন মান 2

92=7

পরিসরণ সমান 7

5. ভ্যারিয়েন্স খুঁজে বের করুন

উত্তরসূচক ভ্যারিয়েন্স খুঁজতে, প্রতিটি পদ এবং গড় মানের মধ্যকার পার্থক্য উদ্ধার করুন, ফলফলের বর্গ করুন, সব বর্গিত ফলফল যোগ করুন, এবং সমষ্টি সংখ্যা হ্রাস করে সমষ্টি যোগফল ভাগ করুন.

গড় 6.333

বর্গযোগফল পেতে, প্রতিটি পদ থেকে গড় বিবেচনা করুন এবং ফলাফলটি বর্গ করুন:

(66.333)2=0.111

(66.333)2=0.111

(76.333)2=0.444

(26.333)2=18.778

(76.333)2=0.444

(86.333)2=2.778

(86.333)2=2.778

(46.333)2=5.444

(96.333)2=7.111

নমুনা বিচ্যুতি পেতে, বর্গযোগফলগুলি যোগ করুন এবং তাদের সমষ্টি পদ সংখ্যা 1 দ্বারা বিয়োগ করুন

সমঃ
0.111+0.111+0.444+18.778+0.444+2.778+2.778+5.444+7.111=37.999
পদসংখ্যা:
9
পদ সংখ্যা মাইনাস 1:
8

বিচ্যুতি:
37.9998=4.750

নমুনা বিচ্যুতি (s2) সমান 4.75

6. মানক বিচ্যুতি খুঁজে বের করুন

নমুনা মানক বিচ্যুতির মান হলো নমুনা ভ্যারিয়েন্সের বর্গমূল। এই কারণে ভ্যারিয়েন্সকে সাধারণত বর্গসংখ্যার পরিবর্তে প্রদর্শন করা হয়।

ভ্যারিয়েন্স: s2=4.75

বর্গমূল খুঁজুন:
s=(4.75)=2.179

মানক বিচলন (s) সমান 2.179

এটি কেন শিখব?

পরিসংখ্যান বিজ্ঞান ডেটা সংগ্রহ, বিশ্লেষণ, ব্যাখ্যা এবং উপস্থাপনার সাথে জড়িয়ে, বিশেষ করে অনিশ্চয়তা এবং পরিবর্তনের প্রেক্ষাপটে। পরিসংখ্যানের সর্বনিম্ন ধারণাগুলিও বোঝা আমাদের সহায় করে দৈনন্দিন জীবনে চোখে পড়া তথ্য প্রক্রিয়া এবং বুঝতে! সম্প্রতি, ২১শ শতাব্দী বেশি ডেটা সংগ্রহ করা হয়েছে, মানব ইতিহাসের চেয়ে বেশি। কম্পিউটারগুলি শক্তিশালী হয়ে উঠেছে, এটি আরও বর্ড়া ডাটা সেট বিশ্লেষণ এবং ব্যাখ্যা করার সম্পর্কে যে কতটা সহজ করে তোলে। এ জন্য, পরিসংখ্যানিক বিশ্লেষণ অনেক ক্ষেত্রে মানে সরকার ও প্রতিষ্ঠানগুলি পূর্ণরূপে বুঝে এবং ডেটা প্রতিক্রিয়া দেওয়ার জন্য বহুল জরুরী ও গুরুত্বপূর্ণ হয়ে উঠছে।

শব্দগুচ্ছ এবং বিষয়াবলি