Gib eine Gleichung oder eine Aufgabe ein
Kamera-Input wird nicht erkannt!

Lösung - Das kleinste gemeinsame Vielfache (kgV) durch Primfaktorzerlegung

78
78

Schritt-für-Schritt-Erklärung

1. Finde die Primfaktoren von 13

13 ist ein Primfaktor.

2. Finde die Primfaktoren von 26

Baumansicht der Primfaktoren von 26: 2 und 13

Die Primfaktoren von 26 sind 2 und 13.

3. Finde die Primfaktoren von 39

Baumansicht der Primfaktoren von 39: 3 und 13

Die Primfaktoren von 39 sind 3 und 13.

4. Finde die Primfaktoren von 78

Baumansicht der Primfaktoren von 78: 2, 3 und 13

Die Primfaktoren von 78 sind 2, 3 und 13.

5. Erstelle eine Primfaktorentabelle

Bestimme die maximale Häufigkeit, mit der jeder Primfaktor (2, 3, 13) bei der Faktorisierung der vorgegebenen Zahlen auftritt:

PrimfaktorZahl13 26 39 78 Max. Auftreten
201011
300111
1311111

Die Primfaktoren 2, 3 und 13 treten einmal auf.

6. Das kgV berechnen

Das kleinste gemeinsame Vielfache ist das Produkt aller Faktoren in der größten Anzahl ihres Auftretens.

kgV = 2313

kgV = 78

Das kleinste gemeinsame Vielfache von 13, 26, 39 und 78 ist 78.

Warum sollte ich das lernen?

Das kleinste gemeinsame Vielfache (kgV) kann verwendet werden, um ungleiche Brüche oder Brüche mit unterschiedlichen Nennern zu addieren oder zu subtrahieren, da es dabei hilft, ihren kleinsten gemeinsamen Nenner zu ermitteln. Das kgV dient auch als Werkzeug zur Lösung von Textaufgaben, bei denen die kleinste gemeinsame Zahl oder der kleinste gemeinsame Betrag aus verschiedenen Mengen ermitteln werden muss.