Gib eine Gleichung oder eine Aufgabe ein
Kamera-Input wird nicht erkannt!

Lösung - Das kleinste gemeinsame Vielfache (kgV) durch Primfaktorzerlegung

1.062.600
1.062.600

Schritt-für-Schritt-Erklärung

1. Finde die Primfaktoren von 20

Baumansicht der Primfaktoren von 20: 2, 2 und 5

Die Primfaktoren von 20 sind 2, 2 und 5.

2. Finde die Primfaktoren von 21

Baumansicht der Primfaktoren von 21: 3 und 7

Die Primfaktoren von 21 sind 3 und 7.

3. Finde die Primfaktoren von 22

Baumansicht der Primfaktoren von 22: 2 und 11

Die Primfaktoren von 22 sind 2 und 11.

4. Finde die Primfaktoren von 23

23 ist ein Primfaktor.

5. Finde die Primfaktoren von 24

Baumansicht der Primfaktoren von 24: 2, 2, 2 und 3

Die Primfaktoren von 24 sind 2, 2, 2 und 3.

6. Finde die Primfaktoren von 25

Baumansicht der Primfaktoren von 25: 5 und 5

Die Primfaktoren von 25 sind 5 und 5.

7. Erstelle eine Primfaktorentabelle

Bestimme die maximale Häufigkeit, mit der jeder Primfaktor (2, 3, 5, 7, 11, 23) bei der Faktorisierung der vorgegebenen Zahlen auftritt:

PrimfaktorZahl20 21 22 23 24 25 Max. Auftreten
22010303
30100101
51000022
70100001
110010001
230001001

Die Primfaktoren 3, 7, 11 und 23 treten einmal auf, während 2 und 5 mehr als einmal auftreten.

8. Das kgV berechnen

Das kleinste gemeinsame Vielfache ist das Produkt aller Faktoren in der größten Anzahl ihres Auftretens.

kgV = 22235571123

kgV = 2335271123

kgV = 1,062,600

Das kleinste gemeinsame Vielfache von 20, 21, 22, 23, 24 und 25 ist 1.062.600.

Warum sollte ich das lernen?

Das kleinste gemeinsame Vielfache (kgV) kann verwendet werden, um ungleiche Brüche oder Brüche mit unterschiedlichen Nennern zu addieren oder zu subtrahieren, da es dabei hilft, ihren kleinsten gemeinsamen Nenner zu ermitteln. Das kgV dient auch als Werkzeug zur Lösung von Textaufgaben, bei denen die kleinste gemeinsame Zahl oder der kleinste gemeinsame Betrag aus verschiedenen Mengen ermitteln werden muss.