Gib eine Gleichung oder eine Aufgabe ein
Kamera-Input wird nicht erkannt!

Lösung - Das kleinste gemeinsame Vielfache (kgV) durch Primfaktorzerlegung

300
300

Schritt-für-Schritt-Erklärung

1. Finde die Primfaktoren von 10

Baumansicht der Primfaktoren von 10: 2 und 5

Die Primfaktoren von 10 sind 2 und 5.

2. Finde die Primfaktoren von 12

Baumansicht der Primfaktoren von 12: 2, 2 und 3

Die Primfaktoren von 12 sind 2, 2 und 3.

3. Finde die Primfaktoren von 15

Baumansicht der Primfaktoren von 15: 3 und 5

Die Primfaktoren von 15 sind 3 und 5.

4. Finde die Primfaktoren von 75

Baumansicht der Primfaktoren von 75: 3, 5 und 5

Die Primfaktoren von 75 sind 3, 5 und 5.

5. Erstelle eine Primfaktorentabelle

Bestimme die maximale Häufigkeit, mit der jeder Primfaktor (2, 3, 5) bei der Faktorisierung der vorgegebenen Zahlen auftritt:

PrimfaktorZahl10 12 15 75 Max. Auftreten
212002
301111
510122

Der Primfaktor 3 tritt einmal auf, während 2 und 5 mehr als einmal auftreten.

6. Das kgV berechnen

Das kleinste gemeinsame Vielfache ist das Produkt aller Faktoren in der größten Anzahl ihres Auftretens.

kgV = 22355

kgV = 22352

kgV = 300

Das kleinste gemeinsame Vielfache von 10, 12, 15 und 75 ist 300.

Warum sollte ich das lernen?

Das kleinste gemeinsame Vielfache (kgV) kann verwendet werden, um ungleiche Brüche oder Brüche mit unterschiedlichen Nennern zu addieren oder zu subtrahieren, da es dabei hilft, ihren kleinsten gemeinsamen Nenner zu ermitteln. Das kgV dient auch als Werkzeug zur Lösung von Textaufgaben, bei denen die kleinste gemeinsame Zahl oder der kleinste gemeinsame Betrag aus verschiedenen Mengen ermitteln werden muss.