Gib eine Gleichung oder eine Aufgabe ein
Kamera-Input wird nicht erkannt!

Lösung - Das kleinste gemeinsame Vielfache (kgV) durch Primfaktorzerlegung

1.040
1.040

Schritt-für-Schritt-Erklärung

1. Finde die Primfaktoren von 8

Baumansicht der Primfaktoren von 8: 2, 2 und 2

Die Primfaktoren von 8 sind 2, 2 und 2.

2. Finde die Primfaktoren von 16

Baumansicht der Primfaktoren von 16: 2, 2, 2 und 2

Die Primfaktoren von 16 sind 2, 2, 2 und 2.

3. Finde die Primfaktoren von 13

13 ist ein Primfaktor.

4. Finde die Primfaktoren von 20

Baumansicht der Primfaktoren von 20: 2, 2 und 5

Die Primfaktoren von 20 sind 2, 2 und 5.

5. Erstelle eine Primfaktorentabelle

Bestimme die maximale Häufigkeit, mit der jeder Primfaktor (2, 5, 13) bei der Faktorisierung der vorgegebenen Zahlen auftritt:

PrimfaktorZahl8 16 13 20 Max. Auftreten
234024
500011
1300101

Die Primfaktoren 5 und 13 treten einmal auf, während 2 mehr als einmal auftritt.

6. Das kgV berechnen

Das kleinste gemeinsame Vielfache ist das Produkt aller Faktoren in der größten Anzahl ihres Auftretens.

kgV = 2222513

kgV = 24513

kgV = 1,040

Das kleinste gemeinsame Vielfache von 8, 16, 13 und 20 ist 1.040.

Warum sollte ich das lernen?

Das kleinste gemeinsame Vielfache (kgV) kann verwendet werden, um ungleiche Brüche oder Brüche mit unterschiedlichen Nennern zu addieren oder zu subtrahieren, da es dabei hilft, ihren kleinsten gemeinsamen Nenner zu ermitteln. Das kgV dient auch als Werkzeug zur Lösung von Textaufgaben, bei denen die kleinste gemeinsame Zahl oder der kleinste gemeinsame Betrag aus verschiedenen Mengen ermitteln werden muss.