Gib eine Gleichung oder eine Aufgabe ein
Kamera-Input wird nicht erkannt!

Lösung - Das kleinste gemeinsame Vielfache (kgV) durch Primfaktorzerlegung

1.080
1.080

Schritt-für-Schritt-Erklärung

1. Finde die Primfaktoren von 24

Baumansicht der Primfaktoren von 24: 2, 2, 2 und 3

Die Primfaktoren von 24 sind 2, 2, 2 und 3.

2. Finde die Primfaktoren von 54

Baumansicht der Primfaktoren von 54: 2, 3, 3 und 3

Die Primfaktoren von 54 sind 2, 3, 3 und 3.

3. Finde die Primfaktoren von 60

Baumansicht der Primfaktoren von 60: 2, 2, 3 und 5

Die Primfaktoren von 60 sind 2, 2, 3 und 5.

4. Finde die Primfaktoren von 12

Baumansicht der Primfaktoren von 12: 2, 2 und 3

Die Primfaktoren von 12 sind 2, 2 und 3.

5. Erstelle eine Primfaktorentabelle

Bestimme die maximale Häufigkeit, mit der jeder Primfaktor (2, 3, 5) bei der Faktorisierung der vorgegebenen Zahlen auftritt:

PrimfaktorZahl24 54 60 12 Max. Auftreten
231223
313113
500101

Der Primfaktor 5 tritt einmal auf, während 2 und 3 mehr als einmal auftreten.

6. Das kgV berechnen

Das kleinste gemeinsame Vielfache ist das Produkt aller Faktoren in der größten Anzahl ihres Auftretens.

kgV = 2223335

kgV = 23335

kgV = 1,080

Das kleinste gemeinsame Vielfache von 24, 54, 60 und 12 ist 1.080.

Warum sollte ich das lernen?

Das kleinste gemeinsame Vielfache (kgV) kann verwendet werden, um ungleiche Brüche oder Brüche mit unterschiedlichen Nennern zu addieren oder zu subtrahieren, da es dabei hilft, ihren kleinsten gemeinsamen Nenner zu ermitteln. Das kgV dient auch als Werkzeug zur Lösung von Textaufgaben, bei denen die kleinste gemeinsame Zahl oder der kleinste gemeinsame Betrag aus verschiedenen Mengen ermitteln werden muss.