Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

x=0.01393
x=0.01393
x=0.14077
x=0.14077

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "0.0129" was replaced by "(0129/10000)". 4 more similar replacement(s)

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

 (((52/1000)-x)*((898/10000)-x))/((21/100)+x)-((129/10000))=0 

Step by step solution :

Step  1  :

             129 
 Simplify   —————
            10000

Equation at the end of step  1  :

  (52       898      21     129 
  ————-x)•(—————-x))———+x)-—————  = 0 
  1000     10000(   100    10000

Step  2  :

             21
 Simplify   ———
            100

Equation at the end of step  2  :

  (52       898      21     129 
  ————-x)•(—————-x))———+x)-—————  = 0 
  1000     10000(   100    10000

Step  3  :

Rewriting the whole as an Equivalent Fraction :

 3.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  100  as the denominator :

         x     x • 100
    x =  —  =  ———————
         1       100  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 3.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 21 + x • 100     100x + 21
 ————————————  =  —————————
     100             100   

Equation at the end of step  3  :

  (52       898     (100x+21)  129 
  ————-x)•(—————-x))—————————-—————  = 0 
  1000     10000       100    10000

Step  4  :

             449
 Simplify   ————
            5000

Equation at the end of step  4  :

  (52       449    (100x+21)  129 
  ————-x)•(————-x))—————————-—————  = 0 
  1000     5000       100    10000

Step  5  :

Rewriting the whole as an Equivalent Fraction :

 5.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  5000  as the denominator :

         x     x • 5000
    x =  —  =  ————————
         1       5000  

Adding fractions that have a common denominator :

 5.2       Adding up the two equivalent fractions

 449 - (x • 5000)     449 - 5000x
 ————————————————  =  ———————————
       5000              5000    

Equation at the end of step  5  :

  (52     (449-5000x)    (100x+21)  129 
  ————-x)•———————————) ÷ —————————-—————  = 0 
  1000       5000           100    10000

Step  6  :

             13
 Simplify   ———
            250

Equation at the end of step  6  :

  (13        (449 - 5000x)    (100x + 21)     129 
  ——— - x) • —————————————) ÷ ——————————— -  —————  = 0 
  250            5000             100        10000

Step  7  :

Rewriting the whole as an Equivalent Fraction :

 7.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  250  as the denominator :

         x     x • 250
    x =  —  =  ———————
         1       250  

Adding fractions that have a common denominator :

 7.2       Adding up the two equivalent fractions

 13 - (x • 250)     13 - 250x
 ——————————————  =  —————————
      250              250   

Equation at the end of step  7  :

  (13 - 250x)   (449 - 5000x)    (100x + 21)     129 
  ——————————— • —————————————) ÷ ——————————— -  —————  = 0 
      250           5000             100        10000

Step  8  :

Equation at the end of step  8  :

  (13 - 250x) • (449 - 5000x)   (100x + 21)     129 
  ——————————————————————————— ÷ ——————————— -  —————  = 0 
            1250000                 100        10000

Step  9  :

         (13-250x)•(449-5000x)      100x+21
 Divide  —————————————————————  by  ———————
                1250000               100  


 9.1    Dividing fractions

To divide fractions, write the divison as multiplication by the reciprocal of the divisor :

(13 - 250x) • (449 - 5000x)     100x + 21       (13 - 250x) • (449 - 5000x)         100    
———————————————————————————  ÷  —————————   =   ———————————————————————————  •  ———————————
          1250000                  100                    1250000               (100x + 21)

Equation at the end of step  9  :

  100 • (13 - 250x) • (449 - 5000x)     129 
  ————————————————————————————————— -  —————  = 0 
        1250000 • (100x + 21)          10000

Step  10  :

Calculating the Least Common Multiple :

 10.1    Find the Least Common Multiple

      The left denominator is :       1250000 • (100x+21) 

      The right denominator is :       10000 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
2444
5747
 Product of all 
 Prime Factors 
1250000100001250000

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 100x+21 101


      Least Common Multiple:
      1250000 • (100x+21) 

Calculating Multipliers :

 10.2    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = 125•(100x+21)

Making Equivalent Fractions :

 10.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.      100 • (13-250x) • (449-5000x)
   ——————————————————  =   —————————————————————————————
         L.C.M                  1250000 • (100x+21)     

   R. Mult. • R. Num.      129 • 125 • (100x+21)
   ——————————————————  =   —————————————————————
         L.C.M              1250000 • (100x+21) 

Adding fractions that have a common denominator :

 10.4       Adding up the two equivalent fractions

 100 • (13-250x) • (449-5000x) - (129 • 125 • (100x+21))     125000000x2-19337500x+245075
 ———————————————————————————————————————————————————————  =  ————————————————————————————
                   1250000 • (100x+21)                           1250000 • (100x+21)     

Step  11  :

Pulling out like terms :

 11.1     Pull out like factors :

   125000000x2 - 19337500x + 245075  =   25 • (5000000x2 - 773500x + 9803) 

Trying to factor by splitting the middle term

 11.2     Factoring  5000000x2 - 773500x + 9803 

The first term is,  5000000x2  its coefficient is  5000000 .
The middle term is,  -773500x  its coefficient is  -773500 .
The last term, "the constant", is  +9803 

Step-1 : Multiply the coefficient of the first term by the constant

Numbers too big. Method shall not be applied

Equation at the end of step  11  :

  25 • (5000000x2 - 773500x + 9803)
  —————————————————————————————————  = 0 
        1250000 • (100x + 21)      

Step  12  :

When a fraction equals zero :

 12.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

  25•(5000000x2-773500x+9803)
  ——————————————————————————— • 1250000•(100x+21) = 0 • 1250000•(100x+21)
       1250000•(100x+21)     

Now, on the left hand side, the  1250000 • 100x+21  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   25  •  (5000000x2-773500x+9803)  = 0

Equations which are never true :

 12.2      Solve :    25   =  0

This equation has no solution.
A a non-zero constant never equals zero.

Parabola, Finding the Vertex :

 12.3      Find the Vertex of   y = 5000000x2-773500x+9803

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 5000000 , is positive (greater than zero). 

 
Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 
Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 
For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is   0.0774  

 
Plugging into the parabola formula   0.0774  for  x  we can calculate the  y -coordinate : 
 
 y = 5000000.0 * 0.08 * 0.08 - 773500.0 * 0.08 + 9803.0
or   y = -20112.112

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = 5000000x2-773500x+9803
Axis of Symmetry (dashed)  {x}={ 0.08} 
Vertex at  {x,y} = { 0.08,-20112.11} 
 x -Intercepts (Roots) :
Root 1 at  {x,y} = { 0.01, 0.00} 
Root 2 at  {x,y} = { 0.14, 0.00} 

Solve Quadratic Equation using the Quadratic Formula

 12.4     Solving    5000000x2-773500x+9803 = 0 by the Quadratic Formula .

 
According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :
                                     
            - B  ±  √ B2-4AC
  x =   ————————
                      2A

  In our case:   
     A   =     5000000.00
     B   =    -773500.00
     C   =    9803.00

   B2 = 598302250000.00 
   4AC = 196060000000.00 
   B2 - 4AC = 402242250000.00 
   SQRT(B2-4AC) =  634225.71
 
  x=( 773500.00 ± 634225.71) /10000000.00 
   x =  0.14077
   x =  0.01393

Two solutions were found :

  1.    x =  0.01393
  2.    x =  0.14077

Why learn this

Latest Related Drills Solved