Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

((x-2)*(2x+3)2)/(x*(x+3)*(x+4))
((x-2)*(2x+3)^2)/(x*(x+3)*(x+4))

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((2•(x2))-x)-6)   (((x2)-x)-20)
  ———————————————— ÷ —————————————
     ((x2)+3x)       ((2x2-7x)-15)

Step  2  :

             x2 - x - 20 
 Simplify   —————————————
            2x2 - 7x - 15

Trying to factor by splitting the middle term

 2.1     Factoring  x2 - x - 20 

The first term is,  x2  its coefficient is  1 .
The middle term is,  -x  its coefficient is  -1 .
The last term, "the constant", is  -20 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -20 = -20 

Step-2 : Find two factors of  -20  whose sum equals the coefficient of the middle term, which is   -1 .

     -20   +   1   =   -19
     -10   +   2   =   -8
     -5   +   4   =   -1   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -5  and  4 
                     x2 - 5x + 4x - 20

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x-5)
              Add up the last 2 terms, pulling out common factors :
                    4 • (x-5)
Step-5 : Add up the four terms of step 4 :
                    (x+4)  •  (x-5)
             Which is the desired factorization

Trying to factor by splitting the middle term

 2.2     Factoring  2x2-7x-15 

The first term is,  2x2  its coefficient is  2 .
The middle term is,  -7x  its coefficient is  -7 .
The last term, "the constant", is  -15 

Step-1 : Multiply the coefficient of the first term by the constant   2 • -15 = -30 

Step-2 : Find two factors of  -30  whose sum equals the coefficient of the middle term, which is   -7 .

     -30   +   1   =   -29
     -15   +   2   =   -13
     -10   +   3   =   -7   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -10  and  3 
                     2x2 - 10x + 3x - 15

Step-4 : Add up the first 2 terms, pulling out like factors :
                    2x • (x-5)
              Add up the last 2 terms, pulling out common factors :
                    3 • (x-5)
Step-5 : Add up the four terms of step 4 :
                    (2x+3)  •  (x-5)
             Which is the desired factorization

Canceling Out :

 2.3    Cancel out  (x-5)  which appears on both sides of the fraction line.

Equation at the end of step  2  :

  (((2•(x2))-x)-6)   (x+4)
  ———————————————— ÷ —————
     ((x2)+3x)       2x+3 

Step  3  :

Equation at the end of step  3  :

  ((2x2 - x) - 6)   (x + 4)
  ——————————————— ÷ ———————
     (x2 + 3x)      2x + 3 

Step  4  :

            2x2 - x - 6
 Simplify   ———————————
              x2 + 3x  

Step  5  :

Pulling out like terms :

 5.1     Pull out like factors :

   x2 + 3x  =   x • (x + 3) 

Trying to factor by splitting the middle term

 5.2     Factoring  2x2 - x - 6 

The first term is,  2x2  its coefficient is  2 .
The middle term is,  -x  its coefficient is  -1 .
The last term, "the constant", is  -6 

Step-1 : Multiply the coefficient of the first term by the constant   2 • -6 = -12 

Step-2 : Find two factors of  -12  whose sum equals the coefficient of the middle term, which is   -1 .

     -12   +   1   =   -11
     -6   +   2   =   -4
     -4   +   3   =   -1   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -4  and  3 
                     2x2 - 4x + 3x - 6

Step-4 : Add up the first 2 terms, pulling out like factors :
                    2x • (x-2)
              Add up the last 2 terms, pulling out common factors :
                    3 • (x-2)
Step-5 : Add up the four terms of step 4 :
                    (2x+3)  •  (x-2)
             Which is the desired factorization

Equation at the end of step  5  :

  (x - 2) • (2x + 3)   (x + 4)
  —————————————————— ÷ ———————
     x • (x + 3)       2x + 3 

Step  6  :

         (x-2)•(2x+3)        x+4 
 Divide  ————————————  by  ——————
           x•(x+3)         (2x+3)


 6.1    Dividing fractions

To divide fractions, write the divison as multiplication by the reciprocal of the divisor :

(x - 2) • (2x + 3)       x + 4        (x - 2) • (2x + 3)      2x + 3
——————————————————  ÷  ————————   =   ——————————————————  •  ———————
   x • (x + 3)         (2x + 3)          x • (x + 3)         (x + 4)

Multiplying Exponential Expressions :

 6.2    Multiply  (2x + 3)  by  (2x + 3) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (2x+3)  and the exponents are :
          1 , as  (2x+3)  is the same number as  (2x+3)1 
 and   1 , as  (2x+3)  is the same number as  (2x+3)1 
The product is therefore,  (2x+3)(1+1) = (2x+3)2 

Final result :

   (x - 2) • (2x + 3)2 
  —————————————————————
  x • (x + 3) • (x + 4)

Why learn this

Terms and topics

Latest Related Drills Solved