Solution - Finding the roots of polynomials
Other Ways to Solve
Finding the roots of polynomialsStep by Step Solution
Step 1 :
Equation at the end of step 1 :
((((5•(x4))-(8•(x3)))-(2•3x2))+8) ————————————————————————————————— ÷ (x+1) (x-2)Step 2 :
Equation at the end of step 2 :
((((5•(x4))-23x3)-(2•3x2))+8) ————————————————————————————— ÷ (x+1) (x-2)Step 3 :
Equation at the end of step 3 :
(((5x4-23x3)-(2•3x2))+8)
———————————————————————— ÷ (x+1)
(x-2)
Step 4 :
5x4 - 8x3 - 6x2 + 8
Simplify ———————————————————
x - 2
Checking for a perfect cube :
4.1 5x4 - 8x3 - 6x2 + 8 is not a perfect cube
Trying to factor by pulling out :
4.2 Factoring: 5x4 - 8x3 - 6x2 + 8
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: -6x2 + 8
Group 2: -8x3 + 5x4
Pull out from each group separately :
Group 1: (3x2 - 4) • (-2)
Group 2: (5x - 8) • (x3)
Bad news !! Factoring by pulling out fails :
The groups have no common factor and can not be added up to form a multiplication.
Polynomial Roots Calculator :
4.3 Find roots (zeroes) of : F(x) = 5x4 - 8x3 - 6x2 + 8
Polynomial Roots Calculator is a set of methods aimed at finding values of x for which F(x)=0
Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers x which can be expressed as the quotient of two integers
The Rational Root Theorem states that if a polynomial zeroes for a rational number P/Q then P is a factor of the Trailing Constant and Q is a factor of the Leading Coefficient
In this case, the Leading Coefficient is 5 and the Trailing Constant is 8.
The factor(s) are:
of the Leading Coefficient : 1,5
of the Trailing Constant : 1 ,2 ,4 ,8
Let us test ....
| P | Q | P/Q | F(P/Q) | Divisor | |||||
|---|---|---|---|---|---|---|---|---|---|
| -1 | 1 | -1.00 | 15.00 | ||||||
| -1 | 5 | -0.20 | 7.83 | ||||||
| -2 | 1 | -2.00 | 128.00 | ||||||
| -2 | 5 | -0.40 | 7.68 | ||||||
| -4 | 1 | -4.00 | 1704.00 | ||||||
| -4 | 5 | -0.80 | 10.30 | ||||||
| -8 | 1 | -8.00 | 24200.00 | ||||||
| -8 | 5 | -1.60 | 58.18 | ||||||
| 1 | 1 | 1.00 | -1.00 | ||||||
| 1 | 5 | 0.20 | 7.70 | ||||||
| 2 | 1 | 2.00 | 0.00 | x - 2 | |||||
| 2 | 5 | 0.40 | 6.66 | ||||||
| 4 | 1 | 4.00 | 680.00 | ||||||
| 4 | 5 | 0.80 | 2.11 | ||||||
| 8 | 1 | 8.00 | 16008.00 | ||||||
| 8 | 5 | 1.60 | -7.36 |
The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms
In our case this means that
5x4 - 8x3 - 6x2 + 8
can be divided with x - 2
Polynomial Long Division :
4.4 Polynomial Long Division
Dividing : 5x4 - 8x3 - 6x2 + 8
("Dividend")
By : x - 2 ("Divisor")
| dividend | 5x4 | - | 8x3 | - | 6x2 | + | 8 | ||||
| - divisor | * 5x3 | 5x4 | - | 10x3 | |||||||
| remainder | 2x3 | - | 6x2 | + | 8 | ||||||
| - divisor | * 2x2 | 2x3 | - | 4x2 | |||||||
| remainder | - | 2x2 | + | 8 | |||||||
| - divisor | * -2x1 | - | 2x2 | + | 4x | ||||||
| remainder | - | 4x | + | 8 | |||||||
| - divisor | * -4x0 | - | 4x | + | 8 | ||||||
| remainder | 0 |
Quotient : 5x3+2x2-2x-4 Remainder: 0
Polynomial Roots Calculator :
4.5 Find roots (zeroes) of : F(x) = 5x3+2x2-2x-4
See theory in step 4.3
In this case, the Leading Coefficient is 5 and the Trailing Constant is -4.
The factor(s) are:
of the Leading Coefficient : 1,5
of the Trailing Constant : 1 ,2 ,4
Let us test ....
| P | Q | P/Q | F(P/Q) | Divisor | |||||
|---|---|---|---|---|---|---|---|---|---|
| -1 | 1 | -1.00 | -5.00 | ||||||
| -1 | 5 | -0.20 | -3.56 | ||||||
| -2 | 1 | -2.00 | -32.00 | ||||||
| -2 | 5 | -0.40 | -3.20 | ||||||
| -4 | 1 | -4.00 | -284.00 | ||||||
| -4 | 5 | -0.80 | -3.68 | ||||||
| 1 | 1 | 1.00 | 1.00 | ||||||
| 1 | 5 | 0.20 | -4.28 | ||||||
| 2 | 1 | 2.00 | 40.00 | ||||||
| 2 | 5 | 0.40 | -4.16 | ||||||
| 4 | 1 | 4.00 | 340.00 | ||||||
| 4 | 5 | 0.80 | -1.76 |
Polynomial Roots Calculator found no rational roots
Canceling Out :
4.6 Cancel out (x-2) which appears on both sides of the fraction line.
Equation at the end of step 4 :
(5x3 + 2x2 - 2x - 4)
————————————————————
(x + 1)
Step 5 :
5x3 + 2x2 - 2x - 4
Simplify ——————————————————
x + 1
Polynomial Long Division :
5.1 Polynomial Long Division
Dividing : 5x3 + 2x2 - 2x - 4
("Dividend")
By : x + 1 ("Divisor")
| dividend | 5x3 | + | 2x2 | - | 2x | - | 4 | ||
| - divisor | * 5x2 | 5x3 | + | 5x2 | |||||
| remainder | - | 3x2 | - | 2x | - | 4 | |||
| - divisor | * -3x1 | - | 3x2 | - | 3x | ||||
| remainder | x | - | 4 | ||||||
| - divisor | * x0 | x | + | 1 | |||||
| remainder | - | 5 |
Quotient : 5x2 - 3x + 1
Remainder : -5
Final result :
5x3 + 2x2 - 2x - 4
——————————————————
x + 1
See results of polynomial long division:
1. In step #05.01
How did we do?
Please leave us feedback.