Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(5x3+2x2-2x-4)/(x+1)
(5x^3+2x^2-2x-4)/(x+1)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  ((((5•(x4))-(8•(x3)))-(2•3x2))+8) 
  ————————————————————————————————— ÷ (x+1)
                (x-2)              

Step  2  :

Equation at the end of step  2  :

  ((((5•(x4))-23x3)-(2•3x2))+8) 
  ————————————————————————————— ÷ (x+1)
              (x-2)            

Step  3  :

Equation at the end of step  3  :

  (((5x4-23x3)-(2•3x2))+8) 
  ———————————————————————— ÷ (x+1)
           (x-2)          

Step  4  :

            5x4 - 8x3 - 6x2 + 8 
 Simplify   ———————————————————
                   x - 2       

Checking for a perfect cube :

 4.1    5x4 - 8x3 - 6x2 + 8  is not a perfect cube

Trying to factor by pulling out :

 4.2      Factoring:  5x4 - 8x3 - 6x2 + 8 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -6x2 + 8 
Group 2:  -8x3 + 5x4 

Pull out from each group separately :

Group 1:   (3x2 - 4) • (-2)
Group 2:   (5x - 8) • (x3)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 4.3    Find roots (zeroes) of :       F(x) = 5x4 - 8x3 - 6x2 + 8
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  5  and the Trailing Constant is  8.

 
The factor(s) are:

of the Leading Coefficient :  1,5
 
of the Trailing Constant :  1 ,2 ,4 ,8

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      15.00   
     -1     5      -0.20      7.83   
     -2     1      -2.00      128.00   
     -2     5      -0.40      7.68   
     -4     1      -4.00      1704.00   
     -4     5      -0.80      10.30   
     -8     1      -8.00     24200.00   
     -8     5      -1.60      58.18   
     1     1      1.00      -1.00   
     1     5      0.20      7.70   
     2     1      2.00      0.00    x - 2 
     2     5      0.40      6.66   
     4     1      4.00      680.00   
     4     5      0.80      2.11   
     8     1      8.00     16008.00   
     8     5      1.60      -7.36   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   5x4 - 8x3 - 6x2 + 8 
can be divided with  x - 2 

Polynomial Long Division :

 4.4    Polynomial Long Division
Dividing :  5x4 - 8x3 - 6x2 + 8 
                              ("Dividend")
By         :    x - 2    ("Divisor")

dividend  5x4 - 8x3 - 6x2   + 8 
- divisor * 5x3   5x4 - 10x3       
remainder    2x3 - 6x2   + 8 
- divisor * 2x2     2x3 - 4x2     
remainder    - 2x2   + 8 
- divisor * -2x1     - 2x2 + 4x   
remainder      - 4x + 8 
- divisor * -4x0       - 4x + 8 
remainder         0

Quotient :  5x3+2x2-2x-4  Remainder:  0 

Polynomial Roots Calculator :

 4.5    Find roots (zeroes) of :       F(x) = 5x3+2x2-2x-4

     See theory in step 4.3
In this case, the Leading Coefficient is  5  and the Trailing Constant is  -4.

 
The factor(s) are:

of the Leading Coefficient :  1,5
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -5.00   
     -1     5      -0.20      -3.56   
     -2     1      -2.00      -32.00   
     -2     5      -0.40      -3.20   
     -4     1      -4.00      -284.00   
     -4     5      -0.80      -3.68   
     1     1      1.00      1.00   
     1     5      0.20      -4.28   
     2     1      2.00      40.00   
     2     5      0.40      -4.16   
     4     1      4.00      340.00   
     4     5      0.80      -1.76   


Polynomial Roots Calculator found no rational roots

Canceling Out :

 4.6    Cancel out  (x-2)  which appears on both sides of the fraction line.

Equation at the end of step  4  :

  (5x3 + 2x2 - 2x - 4)
  ————————————————————
        (x + 1)       

Step  5  :

            5x3 + 2x2 - 2x - 4
 Simplify   ——————————————————
                  x + 1       

Polynomial Long Division :

 5.1    Polynomial Long Division
Dividing :  5x3 + 2x2 - 2x - 4 
                              ("Dividend")
By         :    x + 1    ("Divisor")

dividend  5x3 + 2x2 - 2x - 4 
- divisor * 5x2   5x3 + 5x2     
remainder  - 3x2 - 2x - 4 
- divisor * -3x1   - 3x2 - 3x   
remainder      x - 4 
- divisor * x0       x + 1 
remainder      - 5 

Quotient :  5x2 - 3x + 1 
Remainder :  -5 

Final result :

  5x3 + 2x2 - 2x - 4
  ——————————————————
        x + 1       


See results of polynomial long division:

1. In step #05.01

Why learn this

Latest Related Drills Solved