Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

((-3x2+x-2)*(x+1))/(x-2)
((-3x^2+x-2)*(x+1))/(x-2)

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "x2"   was replaced by   "x^2".  1 more similar replacement(s).

Step  1  :

Equation at the end of step  1  :

  

Step  2  :

Equation at the end of step  2  :

  

Step  3  :

            -3x3 - 2x2 - x - 2
 Simplify   ——————————————————
                  x - 2       

Step  4  :

Pulling out like terms :

 4.1     Pull out like factors :

   -3x3 - 2x2 - x - 2  = 

  -1 • (3x3 + 2x2 + x + 2) 

Checking for a perfect cube :

 4.2    3x3 + 2x2 + x + 2  is not a perfect cube

Trying to factor by pulling out :

 4.3      Factoring:  3x3 + 2x2 + x + 2 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x + 2 
Group 2:  3x3 + 2x2 

Pull out from each group separately :

Group 1:   (x + 2) • (1)
Group 2:   (3x + 2) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 4.4    Find roots (zeroes) of :       F(x) = 3x3 + 2x2 + x + 2
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  3  and the Trailing Constant is  2.

 
The factor(s) are:

of the Leading Coefficient :  1,3
 
of the Trailing Constant :  1 ,2

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x + 1 
     -1     3      -0.33      1.78   
     -2     1      -2.00      -16.00   
     -2     3      -0.67      1.33   
     1     1      1.00      8.00   
     1     3      0.33      2.67   
     2     1      2.00      36.00   
     2     3      0.67      4.44   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   3x3 + 2x2 + x + 2 
can be divided with  x + 1 

Polynomial Long Division :

 4.5    Polynomial Long Division
Dividing :  3x3 + 2x2 + x + 2 
                              ("Dividend")
By         :    x + 1    ("Divisor")

dividend  3x3 + 2x2 + x + 2 
- divisor * 3x2   3x3 + 3x2     
remainder  - x2 + x + 2 
- divisor * -x1   - x2 - x   
remainder      2x + 2 
- divisor * 2x0       2x + 2 
remainder       0

Quotient :  3x2-x+2  Remainder:  0 

Trying to factor by splitting the middle term

 4.6     Factoring  3x2-x+2 

The first term is,  3x2  its coefficient is  3 .
The middle term is,  -x  its coefficient is  -1 .
The last term, "the constant", is  +2 

Step-1 : Multiply the coefficient of the first term by the constant   3 • 2 = 6 

Step-2 : Find two factors of  6  whose sum equals the coefficient of the middle term, which is   -1 .

     -6   +   -1   =   -7
     -3   +   -2   =   -5
     -2   +   -3   =   -5
     -1   +   -6   =   -7
     1   +   6   =   7
     2   +   3   =   5
     3   +   2   =   5
     6   +   1   =   7


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Step  5  :

Pulling out like terms :

 5.1     Pull out like factors :

   -3x2 + x - 2  =   -1 • (3x2 - x + 2) 

Final result :

  (-3x2 + x - 2) • (x + 1)
  ————————————————————————
           x - 2          

Why learn this

Latest Related Drills Solved