Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

x=0.00189
x=0.00189
x=0.00191
x=-0.00191

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "0.2" was replaced by "(2/10)". 2 more similar replacement(s)

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

           ((18/1000000))-((x^2)/((2/10)-x))=0 

Step by step solution :

Step  1  :

            1
 Simplify   —
            5

Equation at the end of step  1  :

     18      )1
  ——————— -  —— - x)  = 0 
  1000000    (5

Step  2  :

Rewriting the whole as an Equivalent Fraction :

 2.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  5  as the denominator :

         x     x • 5
    x =  —  =  —————
         1       5  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 2.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 1 - (x • 5)     1 - 5x
 ———————————  =  ——————
      5            5   

Equation at the end of step  2  :

     18      (1 - 5x)
  ——————— -  ————————  = 0 
  1000000       5    

Step  3  :

1-5x Divide x2 by ———— 5

Equation at the end of step  3  :

     18        5x2 
  ——————— -  ——————  = 0 
  1000000    1 - 5x

Step  4  :

               9  
 Simplify   ——————
            500000

Equation at the end of step  4  :

     9        5x2 
  —————— -  ——————  = 0 
  500000    1 - 5x

Step  5  :

Calculating the Least Common Multiple :

 5.1    Find the Least Common Multiple

      The left denominator is :       500000 

      The right denominator is :       1-5x 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
2505
5606
 Product of all 
 Prime Factors 
5000001500000

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 1-5x 011


      Least Common Multiple:
      500000 • (1-5x) 

Calculating Multipliers :

 5.2    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1-5x

   Right_M = L.C.M / R_Deno = 500000

Making Equivalent Fractions :

 5.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.         9 • (1-5x)  
   ——————————————————  =   ———————————————
         L.C.M             500000 • (1-5x)

   R. Mult. • R. Num.        5x2 • 500000 
   ——————————————————  =   ———————————————
         L.C.M             500000 • (1-5x)

Adding fractions that have a common denominator :

 5.4       Adding up the two equivalent fractions

 9 • (1-5x) - (5x2 • 500000)     -2500000x2 - 45x + 9
 ———————————————————————————  =  ————————————————————
       500000 • (1-5x)            500000 • (1 - 5x)  

Step  6  :

Pulling out like terms :

 6.1     Pull out like factors :

   -2500000x2 - 45x + 9  =   -1 • (2500000x2 + 45x - 9) 

Trying to factor by splitting the middle term

 6.2     Factoring  2500000x2 + 45x - 9 

The first term is,  2500000x2  its coefficient is  2500000 .
The middle term is,  +45x  its coefficient is  45 .
The last term, "the constant", is  -9 

Step-1 : Multiply the coefficient of the first term by the constant   2500000 • -9 = -22500000 

Step-2 : Find two factors of  -22500000  whose sum equals the coefficient of the middle term, which is   45 .


Numbers too big. Method shall not be applied

Equation at the end of step  6  :

  -2500000x2 - 45x + 9
  ————————————————————  = 0 
   500000 • (1 - 5x)  

Step  7  :

When a fraction equals zero :

 7.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

  -2500000x2-45x+9
  ———————————————— • 500000•(1-5x) = 0 • 500000•(1-5x)
   500000•(1-5x)  

Now, on the left hand side, the  500000 • 1-5x  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   -2500000x2-45x+9  = 0

Parabola, Finding the Vertex :

 7.2      Find the Vertex of   y = -2500000x2-45x+9

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens down and accordingly has a highest point (AKA absolute maximum) .    We know this even before plotting  "y"  because the coefficient of the first term, -2500000 , is negative (smaller than zero). 

 
Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 
Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 
For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is  -0.0000  

 
Plugging into the parabola formula  -0.0000  for  x  we can calculate the  y -coordinate : 
 
 y = -2500000.0 * -0.00 * -0.00 - 45.0 * -0.00 + 9.0
or   y = 9.000

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = -2500000x2-45x+9
Axis of Symmetry (dashed)  {x}={-0.00} 
Vertex at  {x,y} = {-0.00, 9.00} 
 x -Intercepts (Roots) :
Root 1 at  {x,y} = { 0.00, 0.00} 
Root 2 at  {x,y} = {-0.00, 0.00} 

Solve Quadratic Equation using the Quadratic Formula

 7.3     Solving    -2500000x2-45x+9 = 0 by the Quadratic Formula .

 
According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :
                                     
            - B  ±  √ B2-4AC
  x =   ————————
                      2A

  In our case:   
     A   =    -2500000.00
     B   =    -45.00
     C   =    9.00

   B2 = 2025.00 
   4AC = -90000000.00 
   B2 - 4AC = 90002025.00 
   SQRT(B2-4AC) =  9486.94
 
  x=( 45.00 ± 9486.94) /-5000000.00 
   x =  -0.00191
   x =  0.00189

Two solutions were found :

  1.    x =  0.00189
  2.    x =  -0.00191

Why learn this

Latest Related Drills Solved