Solution - Adding, subtracting and finding the least common multiple
Step by Step Solution
Reformatting the input :
Changes made to your input should not affect the solution:
(1): "0.13" was replaced by "(13/100)". 4 more similar replacement(s)
Step 1 :
13
Simplify ———
100
Equation at the end of step 1 :
95 4 99 13
((———•x)-———)-((———•x)-———)
100 100 100 100
Step 2 :
99
Simplify ———
100
Equation at the end of step 2 :
95 4 99 13
((———•x)-———)-((———•x)-———)
100 100 100 100
Step 3 :
Adding fractions which have a common denominator :
3.1 Adding fractions which have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
99x - (13) 99x - 13
—————————— = ————————
100 100
Equation at the end of step 3 :
95 4 (99x - 13)
((——— • x) - ———) - ——————————
100 100 100
Step 4 :
1
Simplify ——
25
Equation at the end of step 4 :
95 1 (99x - 13)
((——— • x) - ——) - ——————————
100 25 100
Step 5 :
19
Simplify ——
20
Equation at the end of step 5 :
19 1 (99x - 13)
((—— • x) - ——) - ——————————
20 25 100
Step 6 :
Calculating the Least Common Multiple :
6.1 Find the Least Common Multiple
The left denominator is : 20
The right denominator is : 25
| Prime Factor | Left Denominator | Right Denominator | L.C.M = Max {Left,Right} |
|---|---|---|---|
| 2 | 2 | 0 | 2 |
| 5 | 1 | 2 | 2 |
| Product of all Prime Factors | 20 | 25 | 100 |
Least Common Multiple:
100
Calculating Multipliers :
6.2 Calculate multipliers for the two fractions
Denote the Least Common Multiple by L.C.M
Denote the Left Multiplier by Left_M
Denote the Right Multiplier by Right_M
Denote the Left Deniminator by L_Deno
Denote the Right Multiplier by R_Deno
Left_M = L.C.M / L_Deno = 5
Right_M = L.C.M / R_Deno = 4
Making Equivalent Fractions :
6.3 Rewrite the two fractions into equivalent fractions
L. Mult. • L. Num. 19x • 5 —————————————————— = ——————— L.C.M 100 R. Mult. • R. Num. 4 —————————————————— = ——— L.C.M 100
Adding fractions that have a common denominator :
6.4 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
19x • 5 - (4) 95x - 4
————————————— = ———————
100 100
Equation at the end of step 6 :
(95x - 4) (99x - 13)
————————— - ——————————
100 100
Step 7 :
Adding fractions which have a common denominator :
7.1 Adding fractions which have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
(95x-4) - ((99x-13)) 9 - 4x
———————————————————— = ——————
100 100
Final result :
9 - 4x
——————
100
How did we do?
Please leave us feedback.