Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

(4n3)2
(4n-3)^2

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

                    (((20•(n2))-31n)+12)
  (((12•(n2))-n)-6)•————————————————————
                      (((3•5n2)-2n)-8)  

Step  2  :

Equation at the end of step  2  :

                    (((22•5n2)-31n)+12)
  (((12•(n2))-n)-6)•———————————————————
                        (15n2-2n-8)    

Step  3  :

            20n2 - 31n + 12
 Simplify   ———————————————
             15n2 - 2n - 8 

Trying to factor by splitting the middle term

 3.1     Factoring  20n2 - 31n + 12 

The first term is,  20n2  its coefficient is  20 .
The middle term is,  -31n  its coefficient is  -31 .
The last term, "the constant", is  +12 

Step-1 : Multiply the coefficient of the first term by the constant   20 • 12 = 240 

Step-2 : Find two factors of  240  whose sum equals the coefficient of the middle term, which is   -31 .

     -240   +   -1   =   -241
     -120   +   -2   =   -122
     -80   +   -3   =   -83
     -60   +   -4   =   -64
     -48   +   -5   =   -53
     -40   +   -6   =   -46
     -30   +   -8   =   -38
     -24   +   -10   =   -34
     -20   +   -12   =   -32
     -16   +   -15   =   -31   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -16  and  -15 
                     20n2 - 16n - 15n - 12

Step-4 : Add up the first 2 terms, pulling out like factors :
                    4n • (5n-4)
              Add up the last 2 terms, pulling out common factors :
                    3 • (5n-4)
Step-5 : Add up the four terms of step 4 :
                    (4n-3)  •  (5n-4)
             Which is the desired factorization

Trying to factor by splitting the middle term

 3.2     Factoring  15n2-2n-8 

The first term is,  15n2  its coefficient is  15 .
The middle term is,  -2n  its coefficient is  -2 .
The last term, "the constant", is  -8 

Step-1 : Multiply the coefficient of the first term by the constant   15 • -8 = -120 

Step-2 : Find two factors of  -120  whose sum equals the coefficient of the middle term, which is   -2 .

     -120   +   1   =   -119
     -60   +   2   =   -58
     -40   +   3   =   -37
     -30   +   4   =   -26
     -24   +   5   =   -19
     -20   +   6   =   -14
     -15   +   8   =   -7
     -12   +   10   =   -2   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -12  and  10 
                     15n2 - 12n + 10n - 8

Step-4 : Add up the first 2 terms, pulling out like factors :
                    3n • (5n-4)
              Add up the last 2 terms, pulling out common factors :
                    2 • (5n-4)
Step-5 : Add up the four terms of step 4 :
                    (3n+2)  •  (5n-4)
             Which is the desired factorization

Canceling Out :

 3.3    Cancel out  (5n-4)  which appears on both sides of the fraction line.

Equation at the end of step  3  :

                              (4n - 3)
  (((12 • (n2)) -  n) -  6) • ————————
                               3n + 2 

Step  4  :

Equation at the end of step  4  :

                           (4n - 3)
  (((22•3n2) -  n) -  6) • ————————
                            3n + 2 

Step  5  :

Trying to factor by splitting the middle term

 5.1     Factoring  12n2-n-6 

The first term is,  12n2  its coefficient is  12 .
The middle term is,  -n  its coefficient is  -1 .
The last term, "the constant", is  -6 

Step-1 : Multiply the coefficient of the first term by the constant   12 • -6 = -72 

Step-2 : Find two factors of  -72  whose sum equals the coefficient of the middle term, which is   -1 .

     -72   +   1   =   -71
     -36   +   2   =   -34
     -24   +   3   =   -21
     -18   +   4   =   -14
     -12   +   6   =   -6
     -9   +   8   =   -1   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -9  and  8 
                     12n2 - 9n + 8n - 6

Step-4 : Add up the first 2 terms, pulling out like factors :
                    3n • (4n-3)
              Add up the last 2 terms, pulling out common factors :
                    2 • (4n-3)
Step-5 : Add up the four terms of step 4 :
                    (3n+2)  •  (4n-3)
             Which is the desired factorization

Canceling Out :

 5.2    Cancel out  (3n+2)  which appears on both sides of the fraction line.

Multiplying Exponential Expressions :

 5.3    Multiply  (4n-3)  by  (4n-3) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (4n-3)  and the exponents are :
          1 , as  (4n-3)  is the same number as  (4n-3)1 
 and   1 , as  (4n-3)  is the same number as  (4n-3)1 
The product is therefore,  (4n-3)(1+1) = (4n-3)2 

Final result :

  (4n - 3)2

Why learn this

Terms and topics

Latest Related Drills Solved