Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

((7x2+4x-13)*(2x-1))/(7x-10)
((7x^2+4x-13)*(2x-1))/(7x-10)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  

Step  2  :

            14x3 + x2 - 30x + 13
 Simplify   ————————————————————
                  7x - 10       

Checking for a perfect cube :

 2.1    14x3 + x2 - 30x + 13  is not a perfect cube

Trying to factor by pulling out :

 2.2      Factoring:  14x3 + x2 - 30x + 13 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -30x + 13 
Group 2:  14x3 + x2 

Pull out from each group separately :

Group 1:   (-30x + 13) • (1) = (30x - 13) • (-1)
Group 2:   (14x + 1) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 2.3    Find roots (zeroes) of :       F(x) = 14x3 + x2 - 30x + 13
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  14  and the Trailing Constant is  13.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,7 ,14
 
of the Trailing Constant :  1 ,13

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      30.00   
     -1     2      -0.50      26.50   
     -1     7      -0.14      17.27   
     -1     14      -0.07      15.14   
     -13     1     -13.00     -30186.00   
     -13     2      -6.50     -3594.50   
     -13     7      -1.86      -17.51   
     -13     14      -0.93      30.51   
     1     1      1.00      -2.00   
     1     2      0.50      0.00    2x - 1 
     1     7      0.14      8.78   
     1     14      0.07      10.87   
     13     1      13.00     30550.00   
     13     2      6.50      3705.00   
     13     7      1.86      50.41   
     13     14      0.93      -2.79   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   14x3 + x2 - 30x + 13 
can be divided with  2x - 1 

Polynomial Long Division :

 2.4    Polynomial Long Division
Dividing :  14x3 + x2 - 30x + 13 
                              ("Dividend")
By         :    2x - 1    ("Divisor")

dividend  14x3 + x2 - 30x + 13 
- divisor * 7x2   14x3 - 7x2     
remainder    8x2 - 30x + 13 
- divisor * 4x1     8x2 - 4x   
remainder    - 26x + 13 
- divisor * -13x0     - 26x + 13 
remainder       0

Quotient :  7x2+4x-13  Remainder:  0 

Trying to factor by splitting the middle term

 2.5     Factoring  7x2+4x-13 

The first term is,  7x2  its coefficient is  7 .
The middle term is,  +4x  its coefficient is  4 .
The last term, "the constant", is  -13 

Step-1 : Multiply the coefficient of the first term by the constant   7 • -13 = -91 

Step-2 : Find two factors of  -91  whose sum equals the coefficient of the middle term, which is   4 .

     -91   +   1   =   -90
     -13   +   7   =   -6
     -7   +   13   =   6
     -1   +   91   =   90


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (7x2 + 4x - 13) • (2x - 1)
  ——————————————————————————
           7x - 10          

Why learn this

Latest Related Drills Solved