Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

(4*(a2b+a2c+ab2+ac2+b2c+bc2))/((a+b)*(a+c)*(b+c))
(4*(a^2b+a^2c+ab^2+ac^2+b^2c+bc^2))/((a+b)*(a+c)*(b+c))

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

    ((4•(a2))-1)  ((4•(b2))-1)  ((4•(c2))-1)
  (—————————————+—————————————)+————————————
   ((a-b)•(a-c)) ((b-c)•(b-a))  (c-a)•(c-b) 

Step  2  :

Equation at the end of step  2  :

    ((4•(a2))-1)  ((4•(b2))-1)    (22c2-1) 
  (—————————————+—————————————)+———————————
   ((a-b)•(a-c)) ((b-c)•(b-a))  (c-a)•(c-b)

Step  3  :

                 4c2 - 1     
 Simplify   —————————————————
            (c - a) • (c - b)

Trying to factor as a Difference of Squares :

 3.1      Factoring:  4c2 - 1 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  4  is the square of  2 
Check : 1 is the square of 1
Check :  c2  is the square of  c1 

Factorization is :       (2c + 1)  •  (2c - 1) 

Equation at the end of step  3  :

    ((4•(a2))-1)  ((4•(b2))-1)  (2c+1)•(2c-1)
  (—————————————+—————————————)+—————————————
   ((a-b)•(a-c)) ((b-c)•(b-a))   (c-a)•(c-b) 

Step  4  :

Equation at the end of step  4  :

    ((4•(a2))-1) ((4•(b2))-1)  (2c+1)•(2c-1)
  (—————————————+————————————)+—————————————
   ((a-b)•(a-c)) (b-c)•(b-a)    (c-a)•(c-b) 

Step  5  :

Equation at the end of step  5  :

    ((4•(a2))-1)   (22b2-1)   (2c+1)•(2c-1)
  (—————————————+———————————)+—————————————
   ((a-b)•(a-c)) (b-c)•(b-a)   (c-a)•(c-b) 

Step  6  :

                 4b2 - 1     
 Simplify   —————————————————
            (b - c) • (b - a)

Trying to factor as a Difference of Squares :

 6.1      Factoring:  4b2 - 1 

Check :  4  is the square of  2 
Check : 1 is the square of 1
Check :  b2  is the square of  b1 

Factorization is :       (2b + 1)  •  (2b - 1) 

Equation at the end of step  6  :

    ((4•(a2))-1) (2b+1)•(2b-1)  (2c+1)•(2c-1)
  (—————————————+—————————————)+—————————————
   ((a-b)•(a-c))  (b-c)•(b-a)    (c-a)•(c-b) 

Step  7  :

Equation at the end of step  7  :

   ((4•(a2))-1) (2b+1)•(2b-1)  (2c+1)•(2c-1)
  (————————————+—————————————)+—————————————
   (a-b)•(a-c)   (b-c)•(b-a)    (c-a)•(c-b) 

Step  8  :

Equation at the end of step  8  :

     (22a2-1)  (2b+1)•(2b-1)  (2c+1)•(2c-1)
  (———————————+—————————————)+—————————————
   (a-b)•(a-c)  (b-c)•(b-a)    (c-a)•(c-b) 

Step  9  :

                 4a2 - 1     
 Simplify   —————————————————
            (a - b) • (a - c)

Trying to factor as a Difference of Squares :

 9.1      Factoring:  4a2 - 1 

Check :  4  is the square of  2 
Check : 1 is the square of 1
Check :  a2  is the square of  a1 

Factorization is :       (2a + 1)  •  (2a - 1) 

Equation at the end of step  9  :

   (2a+1)•(2a-1) (2b+1)•(2b-1)  (2c+1)•(2c-1)
  (—————————————+—————————————)+—————————————
    (a-b)•(a-c)   (b-c)•(b-a)    (c-a)•(c-b) 

Step  10  :

Calculating the Least Common Multiple :

 10.1    Find the Least Common Multiple

      The left denominator is :       (a-b) • (a-c) 

      The right denominator is :       (b-c) • (b-a) 

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 a-b 111
 a-c 101
 b-c 011


      Least Common Multiple:
      (a-b) • (a-c) • (b-c) 

Calculating Multipliers :

 10.2    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = b-c

   Right_M = L.C.M / R_Deno = -1•(a-c)

Making Equivalent Fractions :

 10.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.      (2a+1) • (2a-1) • (b-c)
   ——————————————————  =   ———————————————————————
         L.C.M              (a-b) • (a-c) • (b-c) 

   R. Mult. • R. Num.      (2b+1) • (2b-1) • -1 • (a-c)
   ——————————————————  =   ————————————————————————————
         L.C.M                (a-b) • (a-c) • (b-c)    

Adding fractions that have a common denominator :

 10.4       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 (2a+1) • (2a-1) • (b-c) + (2b+1) • (2b-1) • -1 • (a-c)     4a2b-4a2c-4ab2+a+4b2c-b 
 ——————————————————————————————————————————————————————  =  ———————————————————————
                 (a-b) • (a-c) • (b-c)                       (a-b) • (a-c) • (b-c) 

Equation at the end of step  10  :

  (4a2b-4a2c-4ab2+a+4b2c-b)  (2c+1)•(2c-1)
  —————————————————————————+—————————————
      (a-b)•(a-c)•(b-c)      (c-a)•(c-b) 

Step  11  :

Trying to factor by pulling out :

 11.1      Factoring:  4a2b-4a2c-4ab2+a+4b2c-b 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -4ab2+4b2c 
Group 2:  4a2b-4a2c 
Group 3:  a-b 

Pull out from each group separately :

Group 1:   (a-c) • (-4b2)
Group 2:   (b-c) • (4a2)
Group 3:   (a-b) • (1)


Looking for common sub-expressions :

Group 1:   (a-c) • (-4b2)
Group 3:   (a-b) • (1)
Group 2:   (b-c) • (4a2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Calculating the Least Common Multiple :

 11.2    Find the Least Common Multiple

      The left denominator is :       (a-b) • (a-c) • (b-c) 

      The right denominator is :       (c-a) • (c-b) 

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 a-b 101
 a-c 111
 b-c 111


      Least Common Multiple:
      (a-b) • (a-c) • (b-c) 

Calculating Multipliers :

 11.3    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = (a-b)•-1•-1

Making Equivalent Fractions :

 11.4      Rewrite the two fractions into equivalent fractions

   L. Mult. • L. Num.      (4a2b-4a2c-4ab2+a+4b2c-b) 
   ——————————————————  =   —————————————————————————
         L.C.M               (a-b) • (a-c) • (b-c)  

   R. Mult. • R. Num.      (2c+1) • (2c-1) • (a-b) • -1 • -1
   ——————————————————  =   —————————————————————————————————
         L.C.M                   (a-b) • (a-c) • (b-c)      

Adding fractions that have a common denominator :

 11.5       Adding up the two equivalent fractions

 (4a2b-4a2c-4ab2+a+4b2c-b) + (2c+1) • (2c-1) • (a-b) • -1 • -1      4a2b-4a2c-4ab2+4ac2+4b2c-4bc2 
 —————————————————————————————————————————————————————————————  =  —————————————————————————————
                     (a-b) • (a-c) • (b-c)                             (a-b) • (a-c) • (b-c)    

Step  12  :

Pulling out like terms :

 12.1     Pull out like factors :

   4a2b - 4a2c - 4ab2 + 4ac2 + 4b2c - 4bc2  = 

  4 • (a2b - a2c - ab2 + ac2 + b2c - bc2) 

Trying to factor by pulling out :

 12.2      Factoring:  a2b - a2c - ab2 + ac2 + b2c - bc2 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  b2c - ab2 
Group 2:  a2b - a2c 
Group 3:  ac2 - bc2 

Pull out from each group separately :

Group 1:   (a - c) • (-b2)
Group 2:   (b - c) • (a2)
Group 3:   (a - b) • (c2)


Looking for common sub-expressions :

Group 1:   (a - c) • (-b2)
Group 3:   (a - b) • (c2)
Group 2:   (b - c) • (a2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Final result :

  4 • (a2b + a2c + ab2 + ac2 + b2c + bc2) 
  ———————————————————————————————————————
        (a + b) • (a + c) • (b + c)      

Why learn this

Latest Related Drills Solved