Enter an equation or problem
Camera input is not recognized!

Solution - Polynomial long division

4(x+4)(x+1)(2x5)2
4*(x+4)*(x+1)*(2x-5)^2

Other Ways to Solve

Polynomial long division

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((4•(x2))-25)2)-9•(2x-5)2

Step  2  :

Equation at the end of step  2  :

  ((22x2 -  25)2) -  9 • (2x - 5)2

Step  3  :

 3.1     Evaluate :  (4x2-25)2   =    16x4-200x2+625 
 3.2     Evaluate :  (2x-5)2   =    4x2-20x+25 

Step  4  :

Pulling out like terms :

 4.1     Pull out like factors :

   16x4 - 236x2 + 180x + 400  = 

  4 • (4x4 - 59x2 + 45x + 100) 

Checking for a perfect cube :

 4.2    4x4 - 59x2 + 45x + 100  is not a perfect cube

Trying to factor by pulling out :

 4.3      Factoring:  4x4 - 59x2 + 45x + 100 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  45x + 100 
Group 2:  4x4 - 59x2 

Pull out from each group separately :

Group 1:   (9x + 20) • (5)
Group 2:   (4x2 - 59) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 4.4    Find roots (zeroes) of :       F(x) = 4x4 - 59x2 + 45x + 100
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  4  and the Trailing Constant is  100.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1 ,2 ,4 ,5 ,10 ,20 ,25 ,50 ,100

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x + 1 
     -1     2      -0.50      63.00   
     -1     4      -0.25      85.08   
     -2     1      -2.00      -162.00   
     -4     1      -4.00      0.00    x + 4 
     -5     1      -5.00      900.00   
     -5     2      -2.50      -225.00   
     -5     4      -1.25      -38.67   
     -10     1     -10.00     33750.00   
     -20     1     -20.00     615600.00   
     -25     1     -25.00     1524600.00   
     -25     2     -12.50     87975.00   
     -25     4      -6.25      3617.58   
     -50     1     -50.00     24850350.00   
     -100     1     -100.00     399405600.00   
     1     1      1.00      90.00   
     1     2      0.50      108.00   
     1     4      0.25      107.58   
     2     1      2.00      18.00   
     4     1      4.00      360.00   
     5     1      5.00      1350.00   
     5     2      2.50      0.00    2x - 5 
     5     4      1.25      73.83   
     10     1      10.00     34650.00   
     20     1      20.00     617400.00   
     25     1      25.00     1526850.00   
     25     2      12.50     89100.00   
     25     4      6.25      4180.08   
     50     1      50.00     24854850.00   
     100     1     100.00     399414600.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   4x4 - 59x2 + 45x + 100 
can be divided by 3 different polynomials,including by  2x - 5 

Polynomial Long Division :

 4.5    Polynomial Long Division
Dividing :  4x4 - 59x2 + 45x + 100 
                              ("Dividend")
By         :    2x - 5    ("Divisor")

dividend  4x4   - 59x2 + 45x + 100 
- divisor * 2x3   4x4 - 10x3       
remainder    10x3 - 59x2 + 45x + 100 
- divisor * 5x2     10x3 - 25x2     
remainder    - 34x2 + 45x + 100 
- divisor * -17x1     - 34x2 + 85x   
remainder      - 40x + 100 
- divisor * -20x0       - 40x + 100 
remainder         0

Quotient :  2x3+5x2-17x-20  Remainder:  0 

Polynomial Roots Calculator :

 4.6    Find roots (zeroes) of :       F(x) = 2x3+5x2-17x-20

     See theory in step 4.4
In this case, the Leading Coefficient is  2  and the Trailing Constant is  -20.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1 ,2 ,4 ,5 ,10 ,20

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x+1 
     -1     2      -0.50      -10.50   
     -2     1      -2.00      18.00   
     -4     1      -4.00      0.00    x+4 
     -5     1      -5.00      -60.00   
     -5     2      -2.50      22.50   
     -10     1     -10.00     -1350.00   
     -20     1     -20.00     -13680.00   
     1     1      1.00      -30.00   
     1     2      0.50      -27.00   
     2     1      2.00      -18.00   
     4     1      4.00      120.00   
     5     1      5.00      270.00   
     5     2      2.50      0.00    2x-5 
     10     1      10.00      2310.00   
     20     1      20.00     17640.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   2x3+5x2-17x-20 
can be divided by 3 different polynomials,including by  2x-5 

Polynomial Long Division :

 4.7    Polynomial Long Division
Dividing :  2x3+5x2-17x-20 
                              ("Dividend")
By         :    2x-5    ("Divisor")

dividend  2x3 + 5x2 - 17x - 20 
- divisor * x2   2x3 - 5x2     
remainder    10x2 - 17x - 20 
- divisor * 5x1     10x2 - 25x   
remainder      8x - 20 
- divisor * 4x0       8x - 20 
remainder       0

Quotient :  x2+5x+4  Remainder:  0 

Trying to factor by splitting the middle term

 4.8     Factoring  x2+5x+4 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +5x  its coefficient is  5 .
The last term, "the constant", is  +4 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 4 = 4 

Step-2 : Find two factors of  4  whose sum equals the coefficient of the middle term, which is   5 .

     -4   +   -1   =   -5
     -2   +   -2   =   -4
     -1   +   -4   =   -5
     1   +   4   =   5   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  1  and  4 
                     x2 + 1x + 4x + 4

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x+1)
              Add up the last 2 terms, pulling out common factors :
                    4 • (x+1)
Step-5 : Add up the four terms of step 4 :
                    (x+4)  •  (x+1)
             Which is the desired factorization

Multiplying Exponential Expressions :

 4.9    Multiply  (2x-5)  by  (2x-5) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (2x-5)  and the exponents are :
          1 , as  (2x-5)  is the same number as  (2x-5)1 
 and   1 , as  (2x-5)  is the same number as  (2x-5)1 
The product is therefore,  (2x-5)(1+1) = (2x-5)2 

Final result :

  4 • (x + 4) • (x + 1) • (2x - 5)2

Why learn this

Latest Related Drills Solved