Solution - Factoring multivariable polynomials
Other Ways to Solve
Factoring multivariable polynomialsStep by Step Solution
Step 1 :
Equation at the end of step 1 :
(((6•(x2))-7xy)-(3•(y2))) ((—————————————————————————•(x2))-5xy)+3y2 2Step 2 :
Equation at the end of step 2 :
(((6•(x2))-7xy)-3y2) ((————————————————————•x2)-5xy)+3y2 2Step 3 :
Equation at the end of step 3 :
(((2•3x2)-7xy)-3y2)
((———————————————————•x2)-5xy)+3y2
2
Step 4 :
6x2 - 7xy - 3y2
Simplify ———————————————
2
Trying to factor a multi variable polynomial :
4.1 Factoring 6x2 - 7xy - 3y2
Try to factor this multi-variable trinomial using trial and error
Found a factorization : (2x - 3y)•(3x + y)
Equation at the end of step 4 :
(2x - 3y) • (3x + y)
((———————————————————— • x2) - 5xy) + 3y2
2
Step 5 :
Equation at the end of step 5 :
x2 • (2x - 3y) • (3x + y)
(————————————————————————— - 5xy) + 3y2
2
Step 6 :
Rewriting the whole as an Equivalent Fraction :
6.1 Subtracting a whole from a fraction
Rewrite the whole as a fraction using 2 as the denominator :
5xy 5xy • 2
5xy = ——— = ———————
1 2
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
6.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
x2 • (2x-3y) • (3x+y) - (5xy • 2) 6x4 - 7x3y - 3x2y2 - 10xy
————————————————————————————————— = —————————————————————————
2 2
Equation at the end of step 6 :
(6x4 - 7x3y - 3x2y2 - 10xy)
——————————————————————————— + 3y2
2
Step 7 :
Rewriting the whole as an Equivalent Fraction :
7.1 Adding a whole to a fraction
Rewrite the whole as a fraction using 2 as the denominator :
3y2 3y2 • 2
3y2 = ——— = ———————
1 2
Step 8 :
Pulling out like terms :
8.1 Pull out like factors :
6x4 - 7x3y - 3x2y2 - 10xy =
x • (6x3 - 7x2y - 3xy2 - 10y)
Checking for a perfect cube :
8.2 6x3 - 7x2y - 3xy2 - 10y is not a perfect cube
Adding fractions that have a common denominator :
8.3 Adding up the two equivalent fractions
x • (6x3-7x2y-3xy2-10y) + 3y2 • 2 6x4 - 7x3y - 3x2y2 - 10xy + 6y2
————————————————————————————————— = ———————————————————————————————
2 2
Final result :
6x4 - 7x3y - 3x2y2 - 10xy + 6y2
———————————————————————————————
2
How did we do?
Please leave us feedback.