Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

x=0.15465
x=0.15465
x=0.04635
x=0.04635

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "0.064" was replaced by "(064/1000)". 3 more similar replacement(s)

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

      (25/1000)-(((112/1000)-x)*((64/1000)-x)/x)=0 

Step by step solution :

Step  1  :

             8 
 Simplify   ———
            125

Equation at the end of step  1  :

   25     112     (8 
  ————-((————-x)•————)  = 0 
  1000   1000    125x

Step  2  :

Rewriting the whole as an Equivalent Fraction :

 2.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  125  as the denominator :

         x     x • 125
    x =  —  =  ———————
         1       125  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 2.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 8 - (x • 125)     8 - 125x
 —————————————  =  ————————
      125            125   

Equation at the end of step  2  :

   25     112    (8-125x)
  ————-((————-x)•———————— ÷ x)  = 0 
  1000   1000      125   

Step  3  :

         8-125x      
 Divide  ——————  by  x
          125        

Equation at the end of step  3  :

   25        112         (8 - 125x)
  ———— -  ((———— -  x) • ——————————)  = 0 
  1000      1000            125x   

Step  4  :

             14
 Simplify   ———
            125

Equation at the end of step  4  :

   25        14         (8 - 125x)
  ———— -  ((——— -  x) • ——————————)  = 0 
  1000      125            125x   

Step  5  :

Rewriting the whole as an Equivalent Fraction :

 5.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  125  as the denominator :

         x     x • 125
    x =  —  =  ———————
         1       125  

Adding fractions that have a common denominator :

 5.2       Adding up the two equivalent fractions

 14 - (x • 125)     14 - 125x
 ——————————————  =  —————————
      125              125   

Equation at the end of step  5  :

   25      (14 - 125x)   (8 - 125x)
  ———— -  (——————————— • ——————————)  = 0 
  1000         125          125x   

Step  6  :

Equation at the end of step  6  :

   25     (14 - 125x) • (8 - 125x)
  ———— -  ————————————————————————  = 0 
  1000             15625x         

Step  7  :

             1
 Simplify   ——
            40

Equation at the end of step  7  :

   1    (14 - 125x) • (8 - 125x)
  —— -  ————————————————————————  = 0 
  40             15625x         

Step  8  :

Calculating the Least Common Multiple :

 8.1    Find the Least Common Multiple

      The left denominator is :       40 

      The right denominator is :       15625x 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
2303
5166
 Product of all 
 Prime Factors 
4015625125000

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 x 011


      Least Common Multiple:
      125000x 

Calculating Multipliers :

 8.2    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 3125x

   Right_M = L.C.M / R_Deno = 8

Making Equivalent Fractions :

 8.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.       3125x 
   ——————————————————  =   ———————
         L.C.M             125000x

   R. Mult. • R. Num.      (14-125x) • (8-125x) • 8
   ——————————————————  =   ————————————————————————
         L.C.M                     125000x         

Adding fractions that have a common denominator :

 8.4       Adding up the two equivalent fractions

 3125x - ((14-125x) • (8-125x) • 8)     -125000x2 + 25125x - 896
 ——————————————————————————————————  =  ————————————————————————
              125000x                           125000x         

Step  9  :

Pulling out like terms :

 9.1     Pull out like factors :

   -125000x2 + 25125x - 896  =   -1 • (125000x2 - 25125x + 896) 

Trying to factor by splitting the middle term

 9.2     Factoring  125000x2 - 25125x + 896 

The first term is,  125000x2  its coefficient is  125000 .
The middle term is,  -25125x  its coefficient is  -25125 .
The last term, "the constant", is  +896 

Step-1 : Multiply the coefficient of the first term by the constant   125000 • 896 = 112000000 

Step-2 : Find two factors of  112000000  whose sum equals the coefficient of the middle term, which is   -25125 .


Numbers too big. Method shall not be applied

Equation at the end of step  9  :

  -125000x2 + 25125x - 896
  ————————————————————————  = 0 
          125000x         

Step  10  :

When a fraction equals zero :

 10.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

  -125000x2+25125x-896
  ———————————————————— • 125000x = 0 • 125000x
        125000x       

Now, on the left hand side, the  125000x  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   -125000x2+25125x-896  = 0

Parabola, Finding the Vertex :

 10.2      Find the Vertex of   y = -125000x2+25125x-896

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens down and accordingly has a highest point (AKA absolute maximum) .    We know this even before plotting  "y"  because the coefficient of the first term, -125000 , is negative (smaller than zero). 

 
Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 
Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 
For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is   0.1005  

 
Plugging into the parabola formula   0.1005  for  x  we can calculate the  y -coordinate : 
 
 y = -125000.0 * 0.10 * 0.10 + 25125.0 * 0.10 - 896.0
or   y = 366.531

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = -125000x2+25125x-896
Axis of Symmetry (dashed)  {x}={ 0.10} 
Vertex at  {x,y} = { 0.10,366.53} 
 x -Intercepts (Roots) :
Root 1 at  {x,y} = { 0.15, 0.00} 
Root 2 at  {x,y} = { 0.05, 0.00} 

Solve Quadratic Equation using the Quadratic Formula

 10.3     Solving    -125000x2+25125x-896 = 0 by the Quadratic Formula .

 
According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :
                                     
            - B  ±  √ B2-4AC
  x =   ————————
                      2A

  In our case:   
     A   =     -125000.00
     B   =    25125.00
     C   =    -896.00

   B2 = 631265625.00 
   4AC = 448000000.00 
   B2 - 4AC = 183265625.00 
   SQRT(B2-4AC) =  13537.56
 
  x=( -25125.00 ± 13537.56) / -250000.00 
   x =  0.04635
   x =  0.15465

Two solutions were found :

  1.    x =  0.15465
  2.    x =  0.04635

Why learn this

Latest Related Drills Solved