Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

(+b*(a3b2+ab4+ab2+a+b3))/(a2)
(+b*(a^3b^2+ab^4+ab^2+a+b^3))/(a^2)

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "b2"   was replaced by   "b^2".  5 more similar replacement(s).

Step  1  :

            ab + b2
 Simplify   ———————
              a2   

Step  2  :

Pulling out like terms :

 2.1     Pull out like factors :

   ab + b2  =   b • (a + b) 

Equation at the end of step  2  :

    1     ((b2)-(a2))         b•(a+b)
  ((—•b)+(———————————•(b3)))+(———————•b2)
    a          a                a2   

Step  3  :

Multiplying exponential expressions :

 3.1    b1 multiplied by b2 = b(1 + 2) = b3

Equation at the end of step  3  :

    1     ((b2)-(a2))        b3•(a+b)
  ((—•b)+(———————————•(b3)))+————————
    a          a                a2   

Step  4  :

            b2 - a2
 Simplify   ———————
               a   

Trying to factor as a Difference of Squares :

 4.1      Factoring:  b2 - a2 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  b2  is the square of  b1 

Check :  a2  is the square of  a1 

Factorization is :       (b + a)  •  (b - a) 

Equation at the end of step  4  :

    1     (a+b)•(b-a)      b3•(a+b)
  ((—•b)+(———————————•b3))+————————
    a          a              a2   

Step  5  :

Equation at the end of step  5  :

    1    b3•(a+b)•(b-a)  b3•(a+b)
  ((—•b)+——————————————)+————————
    a          a            a2   

Step  6  :

            1
 Simplify   —
            a

Equation at the end of step  6  :

    1    b3•(a+b)•(b-a)  b3•(a+b)
  ((—•b)+——————————————)+————————
    a          a            a2   

Step  7  :

Adding fractions which have a common denominator :

 7.1       Adding fractions which have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 b + b3 • (a+b) • (b-a)     -a2b3 + b5 + b 
 ——————————————————————  =  ——————————————
           a                      a       

Equation at the end of step  7  :

  (-a2b3 + b5 + b)     b3 • (a + b)
  ———————————————— +  ————————————
         a                 a2     

Step  8  :

Step  9  :

Pulling out like terms :

 9.1     Pull out like factors :

   -a2b3 + b5 + b  =   -b • (a2b2 - b4 - 1) 

Trying to factor a multi variable polynomial :

 9.2    Factoring    a2b2 - b4 - 1 

Try to factor this multi-variable trinomial using trial and error 

 
Factorization fails

Calculating the Least Common Multiple :

 9.3    Find the Least Common Multiple

      The left denominator is :       a 

      The right denominator is :       a2 

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 a 122


      Least Common Multiple:
      a2 

Calculating Multipliers :

 9.4    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = a

   Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

 9.5      Rewrite the two fractions into equivalent fractions

   L. Mult. • L. Num.      -b • (a2b2-b4-1) • a
   ——————————————————  =   ————————————————————
         L.C.M                      a2         

   R. Mult. • R. Num.      b3 • (a+b)
   ——————————————————  =   ——————————
         L.C.M                 a2    

Adding fractions that have a common denominator :

 9.6       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 -b • (a2b2-b4-1) • a + b3 • (a+b)      -a3b3 + ab5 + ab3 + ab + b4 
 —————————————————————————————————  =  ———————————————————————————
                a2                                 a2             

Step  10  :

Pulling out like terms :

 10.1     Pull out like factors :

   -a3b3 + ab5 + ab3 + ab + b4  = 

  -b • (a3b2 - ab4 - ab2 - a - b3) 

Final result :

  +b • (a3b2 + ab4 + ab2 + a + b3) 
  ————————————————————————————————
                 a2               

Why learn this

Latest Related Drills Solved