Enter an equation or problem
Camera input is not recognized!

Solution - Factoring multivariable polynomials

(3a4b)(9a2+12ab+16b2)
(3a-4b)*(9a^2+12ab+16b^2)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (27 • (a3)) -  26b3

Step  2  :

Equation at the end of step  2  :

  33a3 -  26b3

Step  3  :

Trying to factor as a Difference of Cubes:

 3.1      Factoring:  27a3-64b3 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  27  is the cube of  3 

Check :  64  is the cube of   4 
Check :  a3 is the cube of   a1

Check :  b3 is the cube of   b1

Factorization is :
             (3a - 4b)  •  (9a2 + 12ab + 16b2) 

Trying to factor a multi variable polynomial :

 3.2    Factoring    9a2 + 12ab + 16b2 

Try to factor this multi-variable trinomial using trial and error 

 
Factorization fails

Final result :

  (3a - 4b) • (9a2 + 12ab + 16b2)

Why learn this

Latest Related Drills Solved