Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

(3g7)(9g2+21g+49)
(3g-7)*(9g^2+21g+49)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  33g3 -  343

Step  2  :

Trying to factor as a Difference of Cubes:

 2.1      Factoring:  27g3-343 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  27  is the cube of  3 

Check :  343  is the cube of   7 
Check :  g3 is the cube of   g1

Factorization is :
             (3g - 7)  •  (9g2 + 21g + 49) 

Trying to factor by splitting the middle term

 2.2     Factoring  9g2 + 21g + 49 

The first term is,  9g2  its coefficient is  9 .
The middle term is,  +21g  its coefficient is  21 .
The last term, "the constant", is  +49 

Step-1 : Multiply the coefficient of the first term by the constant   9 • 49 = 441 

Step-2 : Find two factors of  441  whose sum equals the coefficient of the middle term, which is   21 .

     -441   +   -1   =   -442
     -147   +   -3   =   -150
     -63   +   -7   =   -70
     -49   +   -9   =   -58
     -21   +   -21   =   -42
     -9   +   -49   =   -58


For tidiness, printing of 12 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (3g - 7) • (9g2 + 21g + 49)

Why learn this

Terms and topics

Latest Related Drills Solved