Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(2p3+3p2+2p4)(p2)
(2p^3+3p^2+2p-4)*(p-2)

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "p2"   was replaced by   "p^2".  2 more similar replacement(s).

Step  1  :

Equation at the end of step  1  :

  ((((2•(p4))-(p3))-22p2)-8p)+8

Step  2  :

Equation at the end of step  2  :

  (((2p4 -  p3) -  22p2) -  8p) +  8

Step  3  :

Polynomial Roots Calculator :

 3.1    Find roots (zeroes) of :       F(p) = 2p4-p3-4p2-8p+8
Polynomial Roots Calculator is a set of methods aimed at finding values of  p  for which   F(p)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  p  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  2  and the Trailing Constant is  8.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1 ,2 ,4 ,8

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      15.00   
     -1     2      -0.50      11.25   
     -2     1      -2.00      48.00   
     -4     1      -4.00      552.00   
     -8     1      -8.00      8520.00   
     1     1      1.00      -3.00   
     1     2      0.50      3.00   
     2     1      2.00      0.00    p-2 
     4     1      4.00      360.00   
     8     1      8.00      7368.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   2p4-p3-4p2-8p+8 
can be divided with  p-2 

Polynomial Long Division :

 3.2    Polynomial Long Division
Dividing :  2p4-p3-4p2-8p+8 
                              ("Dividend")
By         :    p-2    ("Divisor")

dividend  2p4 - p3 - 4p2 - 8p + 8 
- divisor * 2p3   2p4 - 4p3       
remainder    3p3 - 4p2 - 8p + 8 
- divisor * 3p2     3p3 - 6p2     
remainder      2p2 - 8p + 8 
- divisor * 2p1       2p2 - 4p   
remainder      - 4p + 8 
- divisor * -4p0       - 4p + 8 
remainder         0

Quotient :  2p3+3p2+2p-4  Remainder:  0 

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(p) = 2p3+3p2+2p-4

     See theory in step 3.1
In this case, the Leading Coefficient is  2  and the Trailing Constant is  -4.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -5.00   
     -1     2      -0.50      -4.50   
     -2     1      -2.00      -12.00   
     -4     1      -4.00      -92.00   
     1     1      1.00      3.00   
     1     2      0.50      -2.00   
     2     1      2.00      28.00   
     4     1      4.00      180.00   


Polynomial Roots Calculator found no rational roots

Final result :

  (2p3 + 3p2 + 2p - 4) • (p - 2)

Why learn this

Latest Related Drills Solved