Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

x=8
x=8
x=2
x=2
x=2
x=-2

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  (((2 • (x3)) -  24x2) -  8x) +  64  = 0 

Step  2  :

Equation at the end of step  2  :

  ((2x3 -  24x2) -  8x) +  64  = 0 

Step  3  :

Step  4  :

Pulling out like terms :

 4.1     Pull out like factors :

   2x3 - 16x2 - 8x + 64  = 

  2 • (x3 - 8x2 - 4x + 32) 

Checking for a perfect cube :

 4.2    x3 - 8x2 - 4x + 32  is not a perfect cube

Trying to factor by pulling out :

 4.3      Factoring:  x3 - 8x2 - 4x + 32 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x3 + 32 
Group 2:  -8x2 - 4x 

Pull out from each group separately :

Group 1:   (x3 + 32) • (1)
Group 2:   (2x + 1) • (-4x)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 4.4    Find roots (zeroes) of :       F(x) = x3 - 8x2 - 4x + 32
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  32.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      27.00   
     -2     1      -2.00      0.00    x + 2 
     -4     1      -4.00      -144.00   
     -8     1      -8.00      -960.00   
     -16     1     -16.00     -6048.00   
     -32     1     -32.00     -40800.00   
     1     1      1.00      21.00   
     2     1      2.00      0.00    x - 2 
     4     1      4.00      -48.00   
     8     1      8.00      0.00    x - 8 
     16     1      16.00      2016.00   
     32     1      32.00     24480.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3 - 8x2 - 4x + 32 
can be divided by 3 different polynomials,including by  x - 8 

Polynomial Long Division :

 4.5    Polynomial Long Division
Dividing :  x3 - 8x2 - 4x + 32 
                              ("Dividend")
By         :    x - 8    ("Divisor")

dividend  x3 - 8x2 - 4x + 32 
- divisor * x2   x3 - 8x2     
remainder    - 4x + 32 
- divisor * 0x1         
remainder    - 4x + 32 
- divisor * -4x0     - 4x + 32 
remainder       0

Quotient :  x2-4  Remainder:  0 

Trying to factor as a Difference of Squares :

 4.6      Factoring:  x2-4 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 4 is the square of 2
Check :  x2  is the square of  x1 

Factorization is :       (x + 2)  •  (x - 2) 

Equation at the end of step  4  :

  2 • (x + 2) • (x - 2) • (x - 8)  = 0 

Step  5  :

Theory - Roots of a product :

 5.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Equations which are never true :

 5.2      Solve :    2   =  0

This equation has no solution.
A a non-zero constant never equals zero.

Solving a Single Variable Equation :

 5.3      Solve  :    x+2 = 0 

 
Subtract  2  from both sides of the equation : 
 
                     x = -2

Solving a Single Variable Equation :

 5.4      Solve  :    x-2 = 0 

 
Add  2  to both sides of the equation : 
 
                     x = 2

Solving a Single Variable Equation :

 5.5      Solve  :    x-8 = 0 

 
Add  8  to both sides of the equation : 
 
                     x = 8

Three solutions were found :

  1.  x = 8
  2.  x = 2
  3.  x = -2

Why learn this

Latest Related Drills Solved