Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(2x23x+2)(x3)
(2x^2-3x+2)*(x-3)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((2 • (x3)) -  32x2) +  11x) -  6

Step  2  :

Equation at the end of step  2  :

  ((2x3 -  32x2) +  11x) -  6

Step  3  :

Checking for a perfect cube :

 3.1    2x3-9x2+11x-6  is not a perfect cube

Trying to factor by pulling out :

 3.2      Factoring:  2x3-9x2+11x-6 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  11x-6 
Group 2:  2x3-9x2 

Pull out from each group separately :

Group 1:   (11x-6) • (1)
Group 2:   (2x-9) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = 2x3-9x2+11x-6
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  2  and the Trailing Constant is  -6.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1 ,2 ,3 ,6

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -28.00   
     -1     2      -0.50      -14.00   
     -2     1      -2.00      -80.00   
     -3     1      -3.00      -174.00   
     -3     2      -1.50      -49.50   
     -6     1      -6.00      -828.00   
     1     1      1.00      -2.00   
     1     2      0.50      -2.50   
     2     1      2.00      -4.00   
     3     1      3.00      0.00    x-3 
     3     2      1.50      -3.00   
     6     1      6.00      168.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   2x3-9x2+11x-6 
can be divided with  x-3 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  2x3-9x2+11x-6 
                              ("Dividend")
By         :    x-3    ("Divisor")

dividend  2x3 - 9x2 + 11x - 6 
- divisor * 2x2   2x3 - 6x2     
remainder  - 3x2 + 11x - 6 
- divisor * -3x1   - 3x2 + 9x   
remainder      2x - 6 
- divisor * 2x0       2x - 6 
remainder       0

Quotient :  2x2-3x+2  Remainder:  0 

Trying to factor by splitting the middle term

 3.5     Factoring  2x2-3x+2 

The first term is,  2x2  its coefficient is  2 .
The middle term is,  -3x  its coefficient is  -3 .
The last term, "the constant", is  +2 

Step-1 : Multiply the coefficient of the first term by the constant   2 • 2 = 4 

Step-2 : Find two factors of  4  whose sum equals the coefficient of the middle term, which is   -3 .

     -4   +   -1   =   -5
     -2   +   -2   =   -4
     -1   +   -4   =   -5
     1   +   4   =   5
     2   +   2   =   4
     4   +   1   =   5


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (2x2 - 3x + 2) • (x - 3)

Why learn this

Latest Related Drills Solved