Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

x=1
x=1
x=12=0.500
x=-1/2=-0.500
x=0.00003.0000i
x=0.0000-3.0000i
x=0.0000+3.0000i
x=0.0000+3.0000i

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  ((((2•(x4))-(x3))+17x2)-9x)-9  = 0 

Step  2  :

Equation at the end of step  2  :

  (((2x4 -  x3) +  17x2) -  9x) -  9  = 0 

Step  3  :

Polynomial Roots Calculator :

 3.1    Find roots (zeroes) of :       F(x) = 2x4-x3+17x2-9x-9
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  2  and the Trailing Constant is  -9.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1 ,3 ,9

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      20.00   
     -1     2      -0.50      0.00    2x+1 
     -3     1      -3.00      360.00   
     -3     2      -1.50      56.25   
     -9     1      -9.00     15300.00   
     -9     2      -4.50      1287.00   
     1     1      1.00      0.00    x-1 
     1     2      0.50      -9.25   
     3     1      3.00      252.00   
     3     2      1.50      22.50   
     9     1      9.00     13680.00   
     9     2      4.50      1023.75   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   2x4-x3+17x2-9x-9 
can be divided by 2 different polynomials,including by  x-1 

Polynomial Long Division :

 3.2    Polynomial Long Division
Dividing :  2x4-x3+17x2-9x-9 
                              ("Dividend")
By         :    x-1    ("Divisor")

dividend  2x4 - x3 + 17x2 - 9x - 9 
- divisor * 2x3   2x4 - 2x3       
remainder    x3 + 17x2 - 9x - 9 
- divisor * x2     x3 - x2     
remainder      18x2 - 9x - 9 
- divisor * 18x1       18x2 - 18x   
remainder        9x - 9 
- divisor * 9x0         9x - 9 
remainder         0

Quotient :  2x3+x2+18x+9  Remainder:  0 

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = 2x3+x2+18x+9

     See theory in step 3.1
In this case, the Leading Coefficient is  2  and the Trailing Constant is  9.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1 ,3 ,9

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -10.00   
     -1     2      -0.50      0.00    2x+1 
     -3     1      -3.00      -90.00   
     -3     2      -1.50      -22.50   
     -9     1      -9.00     -1530.00   
     -9     2      -4.50      -234.00   
     1     1      1.00      30.00   
     1     2      0.50      18.50   
     3     1      3.00      126.00   
     3     2      1.50      45.00   
     9     1      9.00      1710.00   
     9     2      4.50      292.50   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   2x3+x2+18x+9 
can be divided with  2x+1 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  2x3+x2+18x+9 
                              ("Dividend")
By         :    2x+1    ("Divisor")

dividend  2x3 + x2 + 18x + 9 
- divisor * x2   2x3 + x2     
remainder      18x + 9 
- divisor * 0x1         
remainder      18x + 9 
- divisor * 9x0       18x + 9 
remainder       0

Quotient :  x2+9  Remainder:  0 

Polynomial Roots Calculator :

 3.5    Find roots (zeroes) of :       F(x) = x2+9

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  9.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3 ,9

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      10.00   
     -3     1      -3.00      18.00   
     -9     1      -9.00      90.00   
     1     1      1.00      10.00   
     3     1      3.00      18.00   
     9     1      9.00      90.00   


Polynomial Roots Calculator found no rational roots

Equation at the end of step  3  :

  (x2 + 9) • (2x + 1) • (x - 1)  = 0 

Step  4  :

Theory - Roots of a product :

 4.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 4.2      Solve  :    x2+9 = 0 

 
Subtract  9  from both sides of the equation : 
 
                     x2 = -9
 
 
When two things are equal, their square roots are equal. Taking the square root of the two sides of the equation we get:  
 
                     x  =  ± √ -9  

 
In Math,  i  is called the imaginary unit. It satisfies   i2  =-1. Both   i   and   -i   are the square roots of   -1 

Accordingly,  √ -9  =
                    √ -1• 9   =
                    √ -1 •√  9   =
                    i •  √ 9

Can  √ 9 be simplified ?

Yes!   The prime factorization of  9   is
   3•3 
To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

9   =  √ 3•3   =
                ±  3 • √ 1   =
                ±  3


The equation has no real solutions. It has 2 imaginary, or complex solutions.

                      x=  0.0000 + 3.0000
                      x=  0.0000 - 3.0000

Solving a Single Variable Equation :

 4.3      Solve  :    2x+1 = 0 

 
Subtract  1  from both sides of the equation : 
 
                     2x = -1
Divide both sides of the equation by 2:
                     x = -1/2 = -0.500

Solving a Single Variable Equation :

 4.4      Solve  :    x-1 = 0 

 
Add  1  to both sides of the equation : 
 
                     x = 1

Four solutions were found :

  1.  x = 1
  2.  x = -1/2 = -0.500
  3.   x=  0.0000 - 3.0000
  4.   x=  0.0000 + 3.0000

Why learn this

Latest Related Drills Solved