Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(2x22x+1)(2x1)
(2x^2-2x+1)*(2x-1)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((4 • (x3)) -  (2•3x2)) +  4x) -  1

Step  2  :

Equation at the end of step  2  :

  ((22x3 -  (2•3x2)) +  4x) -  1

Step  3  :

Checking for a perfect cube :

 3.1    4x3-6x2+4x-1  is not a perfect cube

Trying to factor by pulling out :

 3.2      Factoring:  4x3-6x2+4x-1 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  4x-1 
Group 2:  4x3-6x2 

Pull out from each group separately :

Group 1:   (4x-1) • (1)
Group 2:   (2x-3) • (2x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = 4x3-6x2+4x-1
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  4  and the Trailing Constant is  -1.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -15.00   
     -1     2      -0.50      -5.00   
     -1     4      -0.25      -2.44   
     1     1      1.00      1.00   
     1     2      0.50      0.00    2x-1 
     1     4      0.25      -0.31   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   4x3-6x2+4x-1 
can be divided with  2x-1 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  4x3-6x2+4x-1 
                              ("Dividend")
By         :    2x-1    ("Divisor")

dividend  4x3 - 6x2 + 4x - 1 
- divisor * 2x2   4x3 - 2x2     
remainder  - 4x2 + 4x - 1 
- divisor * -2x1   - 4x2 + 2x   
remainder      2x - 1 
- divisor * x0       2x - 1 
remainder       0

Quotient :  2x2-2x+1  Remainder:  0 

Trying to factor by splitting the middle term

 3.5     Factoring  2x2-2x+1 

The first term is,  2x2  its coefficient is  2 .
The middle term is,  -2x  its coefficient is  -2 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   2 • 1 = 2 

Step-2 : Find two factors of  2  whose sum equals the coefficient of the middle term, which is   -2 .

     -2   +   -1   =   -3
     -1   +   -2   =   -3
     1   +   2   =   3
     2   +   1   =   3


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (2x2 - 2x + 1) • (2x - 1)

Why learn this

Latest Related Drills Solved