Enter an equation or problem
Camera input is not recognized!

Solution - Polynomial long division

x=4
x=4
x=12=0.500
x=-1/2=-0.500
x=0.00002.0000i
x=0.0000-2.0000i
x=0.0000+2.0000i
x=0.0000+2.0000i

Other Ways to Solve

Polynomial long division

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  (((((4•(x5))-(12•(x4)))+(x3))-(22•13x2))-60x)-16  = 0 

Step  2  :

Equation at the end of step  2  :

  (((((4•(x5))-(22•3x4))+x3)-(22•13x2))-60x)-16  = 0 

Step  3  :

Equation at the end of step  3  :

  ((((22x5 -  (22•3x4)) +  x3) -  (22•13x2)) -  60x) -  16  = 0 

Step  4  :

Trying to factor by pulling out :

 4.1      Factoring:  4x5-12x4+x3-52x2-60x-16 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -52x2-60x 
Group 2:  4x5-12x4 
Group 3:  x3-16 

Pull out from each group separately :

Group 1:   (13x+15) • (-4x)
Group 2:   (x-3) • (4x4)
Group 3:   (x3-16) • (1)


Looking for common sub-expressions :

Group 1:   (13x+15) • (-4x)
Group 3:   (x3-16) • (1)
Group 2:   (x-3) • (4x4)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 4.2    Find roots (zeroes) of :       F(x) = 4x5-12x4+x3-52x2-60x-16
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  4  and the Trailing Constant is  -16.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -25.00   
     -1     2      -0.50      0.00    2x+1 
     -1     4      -0.25      -4.32   
     -2     1      -2.00      -432.00   
     -4     1      -4.00     -7840.00   
     -8     1      -8.00     -183600.00   
     -16     1     -16.00     -4997200.00   
     1     1      1.00      -135.00   
     1     2      0.50      -59.50   
     1     4      0.25      -34.28   
     2     1      2.00      -400.00   
     4     1      4.00      0.00    x-4 
     8     1      8.00     78608.00   
     16     1      16.00     3397680.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   4x5-12x4+x3-52x2-60x-16 
can be divided by 2 different polynomials,including by  x-4 

Polynomial Long Division :

 4.3    Polynomial Long Division
Dividing :  4x5-12x4+x3-52x2-60x-16 
                              ("Dividend")
By         :    x-4    ("Divisor")

dividend  4x5 - 12x4 + x3 - 52x2 - 60x - 16 
- divisor * 4x4   4x5 - 16x4         
remainder    4x4 + x3 - 52x2 - 60x - 16 
- divisor * 4x3     4x4 - 16x3       
remainder      17x3 - 52x2 - 60x - 16 
- divisor * 17x2       17x3 - 68x2     
remainder        16x2 - 60x - 16 
- divisor * 16x1         16x2 - 64x   
remainder          4x - 16 
- divisor * 4x0           4x - 16 
remainder           0

Quotient :  4x4+4x3+17x2+16x+4  Remainder:  0 

Polynomial Roots Calculator :

 4.4    Find roots (zeroes) of :       F(x) = 4x4+4x3+17x2+16x+4

     See theory in step 4.2
In this case, the Leading Coefficient is  4  and the Trailing Constant is  4.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      5.00   
     -1     2      -0.50      0.00    2x+1 
     -1     4      -0.25      1.02   
     -2     1      -2.00      72.00   
     -4     1      -4.00      980.00   
     1     1      1.00      45.00   
     1     2      0.50      17.00   
     1     4      0.25      9.14   
     2     1      2.00      200.00   
     4     1      4.00      1620.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   4x4+4x3+17x2+16x+4 
can be divided with  2x+1 

Polynomial Long Division :

 4.5    Polynomial Long Division
Dividing :  4x4+4x3+17x2+16x+4 
                              ("Dividend")
By         :    2x+1    ("Divisor")

dividend  4x4 + 4x3 + 17x2 + 16x + 4 
- divisor * 2x3   4x4 + 2x3       
remainder    2x3 + 17x2 + 16x + 4 
- divisor * x2     2x3 + x2     
remainder      16x2 + 16x + 4 
- divisor * 8x1       16x2 + 8x   
remainder        8x + 4 
- divisor * 4x0         8x + 4 
remainder         0

Quotient :  2x3+x2+8x+4  Remainder:  0 

Polynomial Roots Calculator :

 4.6    Find roots (zeroes) of :       F(x) = 2x3+x2+8x+4

     See theory in step 4.2
In this case, the Leading Coefficient is  2  and the Trailing Constant is  4.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -5.00   
     -1     2      -0.50      0.00    2x+1 
     -2     1      -2.00      -24.00   
     -4     1      -4.00      -140.00   
     1     1      1.00      15.00   
     1     2      0.50      8.50   
     2     1      2.00      40.00   
     4     1      4.00      180.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   2x3+x2+8x+4 
can be divided with  2x+1 

Polynomial Long Division :

 4.7    Polynomial Long Division
Dividing :  2x3+x2+8x+4 
                              ("Dividend")
By         :    2x+1    ("Divisor")

dividend  2x3 + x2 + 8x + 4 
- divisor * x2   2x3 + x2     
remainder      8x + 4 
- divisor * 0x1         
remainder      8x + 4 
- divisor * 4x0       8x + 4 
remainder       0

Quotient :  x2+4  Remainder:  0 

Polynomial Roots Calculator :

 4.8    Find roots (zeroes) of :       F(x) = x2+4

     See theory in step 4.2
In this case, the Leading Coefficient is  1  and the Trailing Constant is  4.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      5.00   
     -2     1      -2.00      8.00   
     -4     1      -4.00      20.00   
     1     1      1.00      5.00   
     2     1      2.00      8.00   
     4     1      4.00      20.00   


Polynomial Roots Calculator found no rational roots

Multiplying Exponential Expressions :

 4.9    Multiply  (2x+1)  by  (2x+1) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (2x+1)  and the exponents are :
          1 , as  (2x+1)  is the same number as  (2x+1)1 
 and   1 , as  (2x+1)  is the same number as  (2x+1)1 
The product is therefore,  (2x+1)(1+1) = (2x+1)2 

Equation at the end of step  4  :

  (x2 + 4) • (2x + 1)2 • (x - 4)  = 0 

Step  5  :

Theory - Roots of a product :

 5.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 5.2      Solve  :    x2+4 = 0 

 
Subtract  4  from both sides of the equation : 
 
                     x2 = -4
 
 
When two things are equal, their square roots are equal. Taking the square root of the two sides of the equation we get:  
 
                     x  =  ± √ -4  

 
In Math,  i  is called the imaginary unit. It satisfies   i2  =-1. Both   i   and   -i   are the square roots of   -1 

Accordingly,  √ -4  =
                    √ -1• 4   =
                    √ -1 •√  4   =
                    i •  √ 4

Can  √ 4 be simplified ?

Yes!   The prime factorization of  4   is
   2•2 
To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

4   =  √ 2•2   =
                ±  2 • √ 1   =
                ±  2


The equation has no real solutions. It has 2 imaginary, or complex solutions.

                      x=  0.0000 + 2.0000
                      x=  0.0000 - 2.0000

Solving a Single Variable Equation :

 5.3      Solve  :    (2x+1)2 = 0 

 
 (2x+1) 2 represents, in effect, a product of 2 terms which is equal to zero

For the product to be zero, at least one of these terms must be zero. Since all these terms are equal to each other, it actually means :   2x+1  = 0

Subtract  1  from both sides of the equation : 
 
                     2x = -1
Divide both sides of the equation by 2:
                     x = -1/2 = -0.500

Solving a Single Variable Equation :

 5.4      Solve  :    x-4 = 0 

 
Add  4  to both sides of the equation : 
 
                     x = 4

Four solutions were found :

  1.  x = 4
  2.  x = -1/2 = -0.500
  3.   x=  0.0000 - 2.0000
  4.   x=  0.0000 + 2.0000

Why learn this

Latest Related Drills Solved