Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(2x1)(3x1)(x3)
(2x-1)*(3x-1)*(x-3)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((6 • (x3)) -  23x2) +  16x) -  3

Step  2  :

Equation at the end of step  2  :

  (((2•3x3) -  23x2) +  16x) -  3

Step  3  :

Checking for a perfect cube :

 3.1    6x3-23x2+16x-3  is not a perfect cube

Trying to factor by pulling out :

 3.2      Factoring:  6x3-23x2+16x-3 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  16x-3 
Group 2:  6x3-23x2 

Pull out from each group separately :

Group 1:   (16x-3) • (1)
Group 2:   (6x-23) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = 6x3-23x2+16x-3
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  6  and the Trailing Constant is  -3.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6
 
of the Trailing Constant :  1 ,3

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -48.00   
     -1     2      -0.50      -17.50   
     -1     3      -0.33      -11.11   
     -1     6      -0.17      -6.33   
     -3     1      -3.00      -420.00   
     -3     2      -1.50      -99.00   
     1     1      1.00      -4.00   
     1     2      0.50      0.00    2x-1 
     1     3      0.33      0.00    3x-1 
     1     6      0.17      -0.94   
     3     1      3.00      0.00    x-3 
     3     2      1.50      -10.50   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   6x3-23x2+16x-3 
can be divided by 3 different polynomials,including by  x-3 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  6x3-23x2+16x-3 
                              ("Dividend")
By         :    x-3    ("Divisor")

dividend  6x3 - 23x2 + 16x - 3 
- divisor * 6x2   6x3 - 18x2     
remainder  - 5x2 + 16x - 3 
- divisor * -5x1   - 5x2 + 15x   
remainder      x - 3 
- divisor * x0       x - 3 
remainder       0

Quotient :  6x2-5x+1  Remainder:  0 

Trying to factor by splitting the middle term

 3.5     Factoring  6x2-5x+1 

The first term is,  6x2  its coefficient is  6 .
The middle term is,  -5x  its coefficient is  -5 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   6 • 1 = 6 

Step-2 : Find two factors of  6  whose sum equals the coefficient of the middle term, which is   -5 .

     -6   +   -1   =   -7
     -3   +   -2   =   -5   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -3  and  -2 
                     6x2 - 3x - 2x - 1

Step-4 : Add up the first 2 terms, pulling out like factors :
                    3x • (2x-1)
              Add up the last 2 terms, pulling out common factors :
                     1 • (2x-1)
Step-5 : Add up the four terms of step 4 :
                    (3x-1)  •  (2x-1)
             Which is the desired factorization

Final result :

  (2x - 1) • (3x - 1) • (x - 3)

Why learn this

Latest Related Drills Solved