Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

((10p+1)3)/125
((10p+1)^3)/125

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "p2"   was replaced by   "p^2".  1 more similar replacement(s).

Step  1  :

             1 
 Simplify   ———
            125

Equation at the end of step  1  :

              12          6      1 
  (((8•(p3))+(——•(p2)))+(——•p))+———
              5          25     125

Step  2  :

             6
 Simplify   ——
            25

Equation at the end of step  2  :

              12          6      1 
  (((8•(p3))+(——•(p2)))+(——•p))+———
              5          25     125

Step  3  :

12 Simplify —— 5

Equation at the end of step  3  :

              12      6p   1 
  (((8•(p3))+(——•p2))+——)+———
              5       25  125

Step  4  :

Equation at the end of step  4  :

                  12p2     6p      1 
  (((8 • (p3)) +  ————) +  ——) +  ———
                   5       25     125

Step  5  :

Equation at the end of step  5  :

            12p2     6p      1 
  ((23p3 +  ————) +  ——) +  ———
             5       25     125

Step  6  :

Rewriting the whole as an Equivalent Fraction :

 6.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  5  as the denominator :

             23p3     23p3 • 5
     23p3 =  ————  =  ————————
              1          5    

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 6.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 23p3 • 5 + 12p2      40p3 + 12p2
 ———————————————  =  ———————————
        5                 5     

Equation at the end of step  6  :

   (40p3 + 12p2)    6p      1 
  (————————————— +  ——) +  ———
         5          25     125

Step  7  :

Step  8  :

Pulling out like terms :

 8.1     Pull out like factors :

   40p3 + 12p2  =   4p2 • (10p + 3) 

Calculating the Least Common Multiple :

 8.2    Find the Least Common Multiple

      The left denominator is :       5 

      The right denominator is :       25 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
5122
 Product of all 
 Prime Factors 
52525


      Least Common Multiple:
      25 

Calculating Multipliers :

 8.3    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 5

   Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

 8.4      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.      4p2 • (10p+3) • 5
   ——————————————————  =   —————————————————
         L.C.M                    25        

   R. Mult. • R. Num.      6p
   ——————————————————  =   ——
         L.C.M             25

Adding fractions that have a common denominator :

 8.5       Adding up the two equivalent fractions

 4p2 • (10p+3) • 5 + 6p     200p3 + 60p2 + 6p
 ——————————————————————  =  —————————————————
           25                      25        

Equation at the end of step  8  :

  (200p3 + 60p2 + 6p)     1 
  ——————————————————— +  ———
          25             125

Step  9  :

Step  10  :

Pulling out like terms :

 10.1     Pull out like factors :

   200p3 + 60p2 + 6p  =   2p • (100p2 + 30p + 3) 

Trying to factor by splitting the middle term

 10.2     Factoring  100p2 + 30p + 3 

The first term is,  100p2  its coefficient is  100 .
The middle term is,  +30p  its coefficient is  30 .
The last term, "the constant", is  +3 

Step-1 : Multiply the coefficient of the first term by the constant   100 • 3 = 300 

Step-2 : Find two factors of  300  whose sum equals the coefficient of the middle term, which is   30 .

     -300   +   -1   =   -301
     -150   +   -2   =   -152
     -100   +   -3   =   -103
     -75   +   -4   =   -79
     -60   +   -5   =   -65
     -50   +   -6   =   -56


For tidiness, printing of 30 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Calculating the Least Common Multiple :

 10.3    Find the Least Common Multiple

      The left denominator is :       25 

      The right denominator is :       125 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
5233
 Product of all 
 Prime Factors 
25125125


      Least Common Multiple:
      125 

Calculating Multipliers :

 10.4    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 5

   Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

 10.5      Rewrite the two fractions into equivalent fractions

   L. Mult. • L. Num.      2p • (100p2+30p+3) • 5
   ——————————————————  =   ——————————————————————
         L.C.M                      125          

   R. Mult. • R. Num.       1 
   ——————————————————  =   ———
         L.C.M             125

Adding fractions that have a common denominator :

 10.6       Adding up the two equivalent fractions

 2p • (100p2+30p+3) • 5 + 1     1000p3 + 300p2 + 30p + 1
 ——————————————————————————  =  ————————————————————————
            125                           125           

Checking for a perfect cube :

 10.7    Factoring:  1000p3 + 300p2 + 30p + 1 
 .

 
 1000p3 + 300p2 + 30p + 1  is a perfect cube which means it is the cube of another polynomial 

 
In our case, the cubic root of  1000p3 + 300p2 + 30p + 1  is  10p + 1  

 
Factorization is  (10p + 1)3

Final result :

  (10p + 1)3
  ——————————
     125    

Why learn this

Latest Related Drills Solved