Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(4x+3)(x+4)(2x1)(x5)
(4x+3)*(x+4)*(2x-1)*(x-5)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  ((((8•(x4))-(6•(x3)))-(3•5•11x2))-37x)+60

Step  2  :

Equation at the end of step  2  :

  ((((8•(x4))-(2•3x3))-(3•5•11x2))-37x)+60

Step  3  :

Equation at the end of step  3  :

  (((23x4 -  (2•3x3)) -  (3•5•11x2)) -  37x) +  60

Step  4  :

Polynomial Roots Calculator :

 4.1    Find roots (zeroes) of :       F(x) = 8x4-6x3-165x2-37x+60
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  8  and the Trailing Constant is  60.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4 ,8
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,5 ,6 ,10 ,12 ,15 ,20 , etc

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -54.00   
     -1     2      -0.50      38.50   
     -1     4      -0.25      59.06   
     -1     8      -0.12      62.06   
     -2     1      -2.00      -350.00   
     -3     1      -3.00      -504.00   
     -3     2      -1.50      -195.00   
     -3     4      -0.75      0.00    4x+3 
     -3     8      -0.38      51.15   
     -4     1      -4.00      0.00    x+4 
     -5     1      -5.00      1870.00   
     -5     2      -2.50      -472.50   
     -5     4      -1.25      -120.31   
     -5     8      -0.62      21.36   
     -6     1      -6.00      6006.00   
     -10     1     -10.00     69930.00   
     -12     1     -12.00     153000.00   
     -15     1     -15.00     388740.00   
     -15     2      -7.50     18900.00   
     -15     4      -3.75      -223.12   
     -15     8      -1.88      -312.28   
     -20     1     -20.00     1262800.00   
     1     1      1.00      -140.00   
     1     2      0.50      0.00    2x-1 
     1     4      0.25      40.38   
     1     8      0.12      52.79   
     2     1      2.00      -594.00   
     3     1      3.00     -1050.00   
     3     2      1.50      -346.50   
     3     4      0.75      -60.56   
     3     8      0.38      22.76   
     4     1      4.00     -1064.00   
     5     1      5.00      0.00    x-5 
     5     2      2.50      -845.00   
     5     4      1.25      -236.25   
     5     8      0.62      -27.82   
     6     1      6.00      2970.00   
     10     1      10.00     57190.00   
     12     1      12.00     131376.00   
     15     1      15.00     347130.00   
     15     2      7.50     13282.50   
     15     4      3.75     -1133.44   
     15     8      1.88      -530.13   
     20     1      20.00     1165320.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   8x4-6x3-165x2-37x+60 
can be divided by 4 different polynomials,including by  x-5 

Polynomial Long Division :

 4.2    Polynomial Long Division
Dividing :  8x4-6x3-165x2-37x+60 
                              ("Dividend")
By         :    x-5    ("Divisor")

dividend  8x4 - 6x3 - 165x2 - 37x + 60 
- divisor * 8x3   8x4 - 40x3       
remainder    34x3 - 165x2 - 37x + 60 
- divisor * 34x2     34x3 - 170x2     
remainder      5x2 - 37x + 60 
- divisor * 5x1       5x2 - 25x   
remainder      - 12x + 60 
- divisor * -12x0       - 12x + 60 
remainder         0

Quotient :  8x3+34x2+5x-12  Remainder:  0 

Polynomial Roots Calculator :

 4.3    Find roots (zeroes) of :       F(x) = 8x3+34x2+5x-12

     See theory in step 4.1
In this case, the Leading Coefficient is  8  and the Trailing Constant is  -12.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4 ,8
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,12

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      9.00   
     -1     2      -0.50      -7.00   
     -1     4      -0.25      -11.25   
     -1     8      -0.12      -12.11   
     -2     1      -2.00      50.00   
     -3     1      -3.00      63.00   
     -3     2      -1.50      30.00   
     -3     4      -0.75      0.00    4x+3 
     -3     8      -0.38      -9.52   
     -4     1      -4.00      0.00    x+4 
     -6     1      -6.00      -546.00   
     -12     1     -12.00     -9000.00   
     1     1      1.00      35.00   
     1     2      0.50      0.00    2x-1 
     1     4      0.25      -8.50   
     1     8      0.12      -10.83   
     2     1      2.00      198.00   
     3     1      3.00      525.00   
     3     2      1.50      99.00   
     3     4      0.75      14.25   
     3     8      0.38      -4.92   
     4     1      4.00      1064.00   
     6     1      6.00      2970.00   
     12     1      12.00     18768.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   8x3+34x2+5x-12 
can be divided by 3 different polynomials,including by  2x-1 

Polynomial Long Division :

 4.4    Polynomial Long Division
Dividing :  8x3+34x2+5x-12 
                              ("Dividend")
By         :    2x-1    ("Divisor")

dividend  8x3 + 34x2 + 5x - 12 
- divisor * 4x2   8x3 - 4x2     
remainder    38x2 + 5x - 12 
- divisor * 19x1     38x2 - 19x   
remainder      24x - 12 
- divisor * 12x0       24x - 12 
remainder       0

Quotient :  4x2+19x+12  Remainder:  0 

Trying to factor by splitting the middle term

 4.5     Factoring  4x2+19x+12 

The first term is,  4x2  its coefficient is  4 .
The middle term is,  +19x  its coefficient is  19 .
The last term, "the constant", is  +12 

Step-1 : Multiply the coefficient of the first term by the constant   4 • 12 = 48 

Step-2 : Find two factors of  48  whose sum equals the coefficient of the middle term, which is   19 .

     -48   +   -1   =   -49
     -24   +   -2   =   -26
     -16   +   -3   =   -19
     -12   +   -4   =   -16
     -8   +   -6   =   -14
     -6   +   -8   =   -14
     -4   +   -12   =   -16
     -3   +   -16   =   -19
     -2   +   -24   =   -26
     -1   +   -48   =   -49
     1   +   48   =   49
     2   +   24   =   26
     3   +   16   =   19   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  3  and  16 
                     4x2 + 3x + 16x + 12

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (4x+3)
              Add up the last 2 terms, pulling out common factors :
                    4 • (4x+3)
Step-5 : Add up the four terms of step 4 :
                    (x+4)  •  (4x+3)
             Which is the desired factorization

Final result :

  (4x + 3) • (x + 4) • (2x - 1) • (x - 5)

Why learn this

Latest Related Drills Solved