Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

k=1009=11.111
k=100/9=11.111

Step by Step Solution

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                     9/10-(10/k)=0 

Step by step solution :

Step  1  :

            10
 Simplify   ——
            k 

Equation at the end of step  1  :

   9    10
  —— -  ——  = 0 
  10    k 

Step  2  :

             9
 Simplify   ——
            10

Equation at the end of step  2  :

   9    10
  —— -  ——  = 0 
  10    k 

Step  3  :

Calculating the Least Common Multiple :

 3.1    Find the Least Common Multiple

      The left denominator is :       10 

      The right denominator is :       k 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
2101
5101
 Product of all 
 Prime Factors 
10110

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 k 011


      Least Common Multiple:
      10k 

Calculating Multipliers :

 3.2    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = k

   Right_M = L.C.M / R_Deno = 10

Making Equivalent Fractions :

 3.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.      9 • k
   ——————————————————  =   —————
         L.C.M              10k 

   R. Mult. • R. Num.      10 • 10
   ——————————————————  =   ———————
         L.C.M               10k  

Adding fractions that have a common denominator :

 3.4       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 9 • k - (10 • 10)     9k - 100
 —————————————————  =  ————————
        10k              10k   

Equation at the end of step  3  :

  9k - 100
  ————————  = 0 
    10k   

Step  4  :

When a fraction equals zero :

 4.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

  9k-100
  —————— • 10k = 0 • 10k
   10k  

Now, on the left hand side, the  10k  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   9k-100  = 0

Solving a Single Variable Equation :

 4.2      Solve  :    9k-100 = 0 

 
Add  100  to both sides of the equation : 
 
                     9k = 100
Divide both sides of the equation by 9:
                     k = 100/9 = 11.111

One solution was found :

                   k = 100/9 = 11.111

Why learn this

Latest Related Drills Solved