Solution - Reducing fractions to their lowest terms
Other Ways to Solve
Reducing fractions to their lowest termsStep by Step Solution
Step 1 :
b5
Simplify ——
a2
Equation at the end of step 1 :
b5 (((((((a6)+(b6))-((a5)•b))-((4•(a4))•(b2)))+((6•(a3))•(b3)))-(3a•——))-2ab)+b2 a2Step 2 :
Equation at the end of step 2 :
3b5 (((((((a6)+(b6))-((a5)•b))-((4•(a4))•(b2)))+((2•3a3)•b3))-———)-2ab)+b2 aStep 3 :
Equation at the end of step 3 :
3b5
(((((((a6)+(b6))-((a5)•b))-(22a4•b2))+(2•3a3b3))-———)-2ab)+b2
a
Step 4 :
Rewriting the whole as an Equivalent Fraction :
4.1 Subtracting a fraction from a whole
Rewrite the whole as a fraction using a as the denominator :
a6 - a5b - 4a4b2 + 6a3b3 + b6 (a6 - a5b - 4a4b2 + 6a3b3 + b6) • a
a6 - a5b - 4a4b2 + 6a3b3 + b6 = ————————————————————————————— = ———————————————————————————————————
1 a
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
4.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
(a6-a5b-4a4b2+6a3b3+b6) • a - (3b5) a7 - a6b - 4a5b2 + 6a4b3 + ab6 - 3b5
——————————————————————————————————— = ————————————————————————————————————
a a
Equation at the end of step 4 :
(a7 - a6b - 4a5b2 + 6a4b3 + ab6 - 3b5)
(—————————————————————————————————————— - 2ab) + b2
a
Step 5 :
Rewriting the whole as an Equivalent Fraction :
5.1 Subtracting a whole from a fraction
Rewrite the whole as a fraction using a as the denominator :
2ab 2ab • a
2ab = ——— = ———————
1 a
Trying to factor by pulling out :
5.2 Factoring: a7 - a6b - 4a5b2 + 6a4b3 + ab6 - 3b5
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: -a6b + a7
Group 2: -4a5b2 + 6a4b3
Group 3: ab6 - 3b5
Pull out from each group separately :
Group 1: (a - b) • (a6)
Group 2: (2a - 3b) • (-2a4b2)
Group 3: (ab - 3) • (b5)
Looking for common sub-expressions :
Group 1: (a - b) • (a6)
Group 3: (ab - 3) • (b5)
Group 2: (2a - 3b) • (-2a4b2)
Bad news !! Factoring by pulling out fails :
The groups have no common factor and can not be added up to form a multiplication.
Adding fractions that have a common denominator :
5.3 Adding up the two equivalent fractions
(a7-a6b-4a5b2+6a4b3+ab6-3b5) - (2ab • a) a7 - a6b - 4a5b2 + 6a4b3 - 2a2b + ab6 - 3b5
———————————————————————————————————————— = ———————————————————————————————————————————
a a
Equation at the end of step 5 :
(a7 - a6b - 4a5b2 + 6a4b3 - 2a2b + ab6 - 3b5)
————————————————————————————————————————————— + b2
a
Step 6 :
Rewriting the whole as an Equivalent Fraction :
6.1 Adding a whole to a fraction
Rewrite the whole as a fraction using a as the denominator :
b2 b2 • a
b2 = —— = ——————
1 a
Adding fractions that have a common denominator :
6.2 Adding up the two equivalent fractions
(a7-a6b-4a5b2+6a4b3-2a2b+ab6-3b5) + b2 • a a7 - a6b - 4a5b2 + 6a4b3 - 2a2b + ab6 + ab2 - 3b5
—————————————————————————————————————————— = —————————————————————————————————————————————————
a a
Final result :
a7 - a6b - 4a5b2 + 6a4b3 - 2a2b + ab6 + ab2 - 3b5
—————————————————————————————————————————————————
a
How did we do?
Please leave us feedback.