Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

c(2cd3+2cd2+cd+16d3+16d2+40d+32)
c*(2cd^3+2cd^2+cd+16d^3+16d^2+40d+32)

Step by Step Solution

Step  1  :

               c  
 Simplify   ——————
            4 + 4d

Step  2  :

Pulling out like terms :

 2.1     Pull out like factors :

   4 + 4d  =   4 • (d + 1) 

Equation at the end of step  2  :

          c               c   
  (cd+(———————•16))-(2•———————)
       (cd-8d)         4•(d+1)

Step  3  :

Equation at the end of step  3  :

          c            c   
  (cd+(———————•16))-———————
       (cd-8d)      2•(d+1)

Step  4  :

               c   
 Simplify   ———————
            cd - 8d

Step  5  :

Pulling out like terms :

 5.1     Pull out like factors :

   cd - 8d  =   d • (c - 8) 

Equation at the end of step  5  :

          c            c   
  (cd+(———————•16))-———————
       d•(c-8)      2•(d+1)

Step  6  :

Equation at the end of step  6  :

             16c              c     
  (cd +  ———————————) -  ———————————
         d • (c - 8)     2 • (d + 1)

Step  7  :

Rewriting the whole as an Equivalent Fraction :

 7.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  d • (c-8)  as the denominator :

           cd     cd • d • (c - 8)
     cd =  ——  =  ————————————————
           1        d • (c - 8)   

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 7.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 cd • d • (c-8) + 16c     c2d2 - 8cd2 + 16c 
 ————————————————————  =  —————————————————
      d • (c-8)              d • (c - 8)   

Equation at the end of step  7  :

  (c2d2 - 8cd2 + 16c)          c     
  ——————————————————— -  ———————————
      d • (c - 8)        2 • (d + 1)

Step  8  :

Step  9  :

Pulling out like terms :

 9.1     Pull out like factors :

   c2d2 - 8cd2 + 16c  =   c • (cd2 - 8d2 + 16) 

Trying to factor a multi variable polynomial :

 9.2    Factoring    cd2 - 8d2 + 16 

Try to factor this multi-variable trinomial using trial and error 

 
Factorization fails

Calculating the Least Common Multiple :

 9.3    Find the Least Common Multiple

      The left denominator is :       d • (c - 8) 

      The right denominator is :       2 • (d + 1) 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
2011
 Product of all 
 Prime Factors 
122

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 d 101
 c - 8 101
 d + 1 011


      Least Common Multiple:
      2d • (c - 8) • (d + 1) 

Calculating Multipliers :

 9.4    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 2•(d + 1)

   Right_M = L.C.M / R_Deno = d•(c - 8)

Making Equivalent Fractions :

 9.5      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.      c • (cd2-8d2+16) • 2 • (d+1)
   ——————————————————  =   ————————————————————————————
         L.C.M                  2d • (c-8) • (d+1)     

   R. Mult. • R. Num.         c • d • (c-8)  
   ——————————————————  =   ——————————————————
         L.C.M             2d • (c-8) • (d+1)

Adding fractions that have a common denominator :

 9.6       Adding up the two equivalent fractions

 c • (cd2-8d2+16) • 2 • (d+1) - (c • d • (c-8))     2c2d3 + 2c2d2 - c2d - 16cd3 - 16cd2 + 40cd + 32c 
 ——————————————————————————————————————————————  =  ————————————————————————————————————————————————
               2d • (c-8) • (d+1)                                2d • (c - 8) • (d + 1)             

Step  10  :

Pulling out like terms :

 10.1     Pull out like factors :

   2c2d3 + 2c2d2 - c2d - 16cd3 - 16cd2 + 40cd + 32c  = 

  c • (2cd3 + 2cd2 + cd + 16d3 + 16d2 + 40d + 32) 

Final result :

 c • (2cd3 + 2cd2 + cd + 16d3 + 16d2 + 40d + 32)

Why learn this

Latest Related Drills Solved