Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(x+1)(x1)(x2)(x4)
(x+1)*(x-1)*(x-2)*(x-4)

Step by Step Solution

Step  1  :

Step  2  :

Pulling out like terms :

 2.1     Pull out like factors :

   x2 - 3x  =   x • (x - 3) 

Equation at the end of step  2  :

  ((((x2)-(3x))2)-2x•(x-3))-8

Step  3  :

Polynomial Roots Calculator :

 3.1    Find roots (zeroes) of :       F(x) = x4-6x3+7x2+6x-8
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -8.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x+1 
     -2     1      -2.00      72.00   
     -4     1      -4.00      720.00   
     -8     1      -8.00      7560.00   
     1     1      1.00      0.00    x-1 
     2     1      2.00      0.00    x-2 
     4     1      4.00      0.00    x-4 
     8     1      8.00      1512.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x4-6x3+7x2+6x-8 
can be divided by 4 different polynomials,including by  x-4 

Polynomial Long Division :

 3.2    Polynomial Long Division
Dividing :  x4-6x3+7x2+6x-8 
                              ("Dividend")
By         :    x-4    ("Divisor")

dividend  x4 - 6x3 + 7x2 + 6x - 8 
- divisor * x3   x4 - 4x3       
remainder  - 2x3 + 7x2 + 6x - 8 
- divisor * -2x2   - 2x3 + 8x2     
remainder    - x2 + 6x - 8 
- divisor * -x1     - x2 + 4x   
remainder        2x - 8 
- divisor * 2x0         2x - 8 
remainder         0

Quotient :  x3-2x2-x+2  Remainder:  0 

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = x3-2x2-x+2

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  2.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x+1 
     -2     1      -2.00      -12.00   
     1     1      1.00      0.00    x-1 
     2     1      2.00      0.00    x-2 


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3-2x2-x+2 
can be divided by 3 different polynomials,including by  x-2 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  x3-2x2-x+2 
                              ("Dividend")
By         :    x-2    ("Divisor")

dividend  x3 - 2x2 - x + 2 
- divisor * x2   x3 - 2x2     
remainder    - x + 2 
- divisor * 0x1         
remainder    - x + 2 
- divisor * -x0     - x + 2 
remainder       0

Quotient :  x2-1  Remainder:  0 

Trying to factor as a Difference of Squares :

 3.5      Factoring:  x2-1 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 1 is the square of 1
Check :  x2  is the square of  x1 

Factorization is :       (x + 1)  •  (x - 1) 

Final result :

  (x + 1) • (x - 1) • (x - 2) • (x - 4)

Why learn this

Latest Related Drills Solved