Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

3(x+3)(x+2)(x1)
3*(x+3)*(x+2)*(x-1)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((3 • (x3)) +  (22•3x2)) +  3x) -  18

Step  2  :

Equation at the end of step  2  :

  ((3x3 +  (22•3x2)) +  3x) -  18

Step  3  :

Step  4  :

Pulling out like terms :

 4.1     Pull out like factors :

   3x3 + 12x2 + 3x - 18  = 

  3 • (x3 + 4x2 + x - 6) 

Checking for a perfect cube :

 4.2    x3 + 4x2 + x - 6  is not a perfect cube

Trying to factor by pulling out :

 4.3      Factoring:  x3 + 4x2 + x - 6 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x - 6 
Group 2:  x3 + 4x2 

Pull out from each group separately :

Group 1:   (x - 6) • (1)
Group 2:   (x + 4) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 4.4    Find roots (zeroes) of :       F(x) = x3 + 4x2 + x - 6
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -6.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,6

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -4.00   
     -2     1      -2.00      0.00    x + 2 
     -3     1      -3.00      0.00    x + 3 
     -6     1      -6.00      -84.00   
     1     1      1.00      0.00    x - 1 
     2     1      2.00      20.00   
     3     1      3.00      60.00   
     6     1      6.00      360.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3 + 4x2 + x - 6 
can be divided by 3 different polynomials,including by  x - 1 

Polynomial Long Division :

 4.5    Polynomial Long Division
Dividing :  x3 + 4x2 + x - 6 
                              ("Dividend")
By         :    x - 1    ("Divisor")

dividend  x3 + 4x2 + x - 6 
- divisor * x2   x3 - x2     
remainder    5x2 + x - 6 
- divisor * 5x1     5x2 - 5x   
remainder      6x - 6 
- divisor * 6x0       6x - 6 
remainder       0

Quotient :  x2+5x+6  Remainder:  0 

Trying to factor by splitting the middle term

 4.6     Factoring  x2+5x+6 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +5x  its coefficient is  5 .
The last term, "the constant", is  +6 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 6 = 6 

Step-2 : Find two factors of  6  whose sum equals the coefficient of the middle term, which is   5 .

     -6   +   -1   =   -7
     -3   +   -2   =   -5
     -2   +   -3   =   -5
     -1   +   -6   =   -7
     1   +   6   =   7
     2   +   3   =   5   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  2  and  3 
                     x2 + 2x + 3x + 6

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x+2)
              Add up the last 2 terms, pulling out common factors :
                    3 • (x+2)
Step-5 : Add up the four terms of step 4 :
                    (x+3)  •  (x+2)
             Which is the desired factorization

Final result :

  3 • (x + 3) • (x + 2) • (x - 1)

Why learn this

Latest Related Drills Solved