Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

(t6)(t2+6t+36)
(t-6)*(t^2+6t+36)

Step by Step Solution

Step  1  :

Trying to factor as a Difference of Cubes:

 1.1      Factoring:  t3-216 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  216  is the cube of   6 
Check :  t3 is the cube of   t1

Factorization is :
             (t - 6)  •  (t2 + 6t + 36) 

Trying to factor by splitting the middle term

 1.2     Factoring  t2 + 6t + 36 

The first term is,  t2  its coefficient is  1 .
The middle term is,  +6t  its coefficient is  6 .
The last term, "the constant", is  +36 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 36 = 36 

Step-2 : Find two factors of  36  whose sum equals the coefficient of the middle term, which is   6 .

     -36   +   -1   =   -37
     -18   +   -2   =   -20
     -12   +   -3   =   -15
     -9   +   -4   =   -13
     -6   +   -6   =   -12
     -4   +   -9   =   -13


For tidiness, printing of 12 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (t - 6) • (t2 + 6t + 36)

Why learn this

Terms and topics

Latest Related Drills Solved