Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

x=9
x=9
x=(-252-sqrt(56808))/2=-126-3sqrt(1578)=-245.172
x=(-252-sqrt(56808))/2=-126-3sqrt(1578)=-245.172
x=(-252+sqrt(56808))/2=-126+3sqrt(1578)=-6.828
x=(-252+sqrt(56808))/2=-126+3sqrt(1578)=-6.828

Step by Step Solution

Step by step solution :

Step  1  :

            x
 Simplify   —
            3

Equation at the end of step  1  :

    x                           
  ((— • x2) +  (9x - 11)2) -  5143  = 0 
    3                           

Step  2  :

Multiplying exponential expressions :

 2.1    x1 multiplied by x2 = x(1 + 2) = x3

Equation at the end of step  2  :

   x3                    
  (—— +  (9x - 11)2) -  5143  = 0 
   3                     

Step  3  :

Rewriting the whole as an Equivalent Fraction :

 3.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  3  as the denominator :

                  (9x - 11)2     (9x - 11)2 • 3
    (9x - 11)2 =  ——————————  =  ——————————————
                      1                3       

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 3.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 x3 + (9x-11)2 • 3     x3 + 243x2 - 594x + 363
 —————————————————  =  ———————————————————————
         3                        3           

Equation at the end of step  3  :

  (x3 + 243x2 - 594x + 363)    
  ————————————————————————— -  5143  = 0 
              3                

Step  4  :

Rewriting the whole as an Equivalent Fraction :

 4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  3  as the denominator :

            5143     5143 • 3
    5143 =  ————  =  ————————
             1          3    

Checking for a perfect cube :

 4.2    x3 + 243x2 - 594x + 363  is not a perfect cube

Trying to factor by pulling out :

 4.3      Factoring:  x3 + 243x2 - 594x + 363 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x3 + 363 
Group 2:  243x2 - 594x 

Pull out from each group separately :

Group 1:   (x3 + 363) • (1)
Group 2:   (9x - 22) • (27x)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 4.4    Find roots (zeroes) of :       F(x) = x3 + 243x2 - 594x + 363
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  363.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3 ,11 ,33 ,121 ,363

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      1199.00   
     -3     1      -3.00      4305.00   
     -11     1     -11.00     34969.00   
     -33     1     -33.00     248655.00   
     -121     1     -121.00     1858439.00   
     -363     1     -363.00     -15596295.00   
     1     1      1.00      13.00   
     3     1      3.00      795.00   
     11     1      11.00     24563.00   
     33     1      33.00     281325.00   
     121     1     121.00     5257813.00   
     363     1     363.00     79636755.00   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 4.5       Adding up the two equivalent fractions

 (x3+243x2-594x+363) - (5143 • 3)     x3 + 243x2 - 594x - 15066
 ————————————————————————————————  =  —————————————————————————
                3                                 3            

Checking for a perfect cube :

 4.6    x3 + 243x2 - 594x - 15066  is not a perfect cube

Trying to factor by pulling out :

 4.7      Factoring:  x3 + 243x2 - 594x - 15066 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x3 - 594x 
Group 2:  243x2 - 15066 

Pull out from each group separately :

Group 1:   (x2 - 594) • (x)
Group 2:   (x2 - 62) • (243)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 4.8    Find roots (zeroes) of :       F(x) = x3 + 243x2 - 594x - 15066

     See theory in step 4.4
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -15066.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,6 ,9 ,18 ,27 ,31 ,54 ,62 , etc

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00     -14230.00   
     -2     1      -2.00     -12914.00   
     -3     1      -3.00     -11124.00   
     -6     1      -6.00     -2970.00   
     -9     1      -9.00      9234.00   
     -18     1     -18.00     68526.00   
     -27     1     -27.00     158436.00   
     -31     1     -31.00     207080.00   
     -54     1     -54.00     568134.00   
     -62     1     -62.00     717526.00   
     1     1      1.00     -15416.00   
     2     1      2.00     -15274.00   
     3     1      3.00     -14634.00   
     6     1      6.00     -9666.00   
     9     1      9.00      0.00    x - 9 
     18     1      18.00     58806.00   
     27     1      27.00     165726.00   
     31     1      31.00     229834.00   
     54     1      54.00     818910.00   
     62     1      62.00     1120526.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3 + 243x2 - 594x - 15066 
can be divided with  x - 9 

Polynomial Long Division :

 4.9    Polynomial Long Division
Dividing :  x3 + 243x2 - 594x - 15066 
                              ("Dividend")
By         :    x - 9    ("Divisor")

dividend  x3 + 243x2 - 594x - 15066 
- divisor * x2   x3 - 9x2     
remainder    252x2 - 594x - 15066 
- divisor * 252x1     252x2 - 2268x   
remainder      1674x - 15066 
- divisor * 1674x0       1674x - 15066 
remainder       0

Quotient :  x2+252x+1674  Remainder:  0 

Trying to factor by splitting the middle term

 4.10     Factoring  x2+252x+1674 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +252x  its coefficient is  252 .
The last term, "the constant", is  +1674 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1674 = 1674 

Step-2 : Find two factors of  1674  whose sum equals the coefficient of the middle term, which is   252 .

     -1674   +   -1   =   -1675
     -837   +   -2   =   -839
     -558   +   -3   =   -561
     -279   +   -6   =   -285
     -186   +   -9   =   -195
     -93   +   -18   =   -111


For tidiness, printing of 26 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Equation at the end of step  4  :

  (x2 + 252x + 1674) • (x - 9)
  ————————————————————————————  = 0 
               3              

Step  5  :

When a fraction equals zero :

 5.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

  (x2+252x+1674)•(x-9)
  ———————————————————— • 3 = 0 • 3
           3          

Now, on the left hand side, the  3  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   (x2+252x+1674)  •  (x-9)  = 0

Theory - Roots of a product :

 5.2    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Parabola, Finding the Vertex :

 5.3      Find the Vertex of   y = x2+252x+1674

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 1 , is positive (greater than zero). 

 
Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 
Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 
For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is  -126.0000  

 
Plugging into the parabola formula  -126.0000  for  x  we can calculate the  y -coordinate : 
 
 y = 1.0 * -126.00 * -126.00 + 252.0 * -126.00 + 1674.0
or   y = -14202.000

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = x2+252x+1674
Axis of Symmetry (dashed)  {x}={-126.00} 
Vertex at  {x,y} = {-126.00,-14202.00} 
 x -Intercepts (Roots) :
Root 1 at  {x,y} = {-245.17, 0.00} 
Root 2 at  {x,y} = {-6.83, 0.00} 

Solve Quadratic Equation by Completing The Square

 5.4     Solving   x2+252x+1674 = 0 by Completing The Square .

 
Subtract  1674  from both side of the equation :
   x2+252x = -1674

Now the clever bit: Take the coefficient of  x , which is  252 , divide by two, giving  126 , and finally square it giving  15876 

Add  15876  to both sides of the equation :
  On the right hand side we have :
   -1674  +  15876    or,  (-1674/1)+(15876/1) 
  The common denominator of the two fractions is  1   Adding  (-1674/1)+(15876/1)  gives  14202/1 
  So adding to both sides we finally get :
   x2+252x+15876 = 14202

Adding  15876  has completed the left hand side into a perfect square :
   x2+252x+15876  =
   (x+126) • (x+126)  =
  (x+126)2
Things which are equal to the same thing are also equal to one another. Since
   x2+252x+15876 = 14202 and
   x2+252x+15876 = (x+126)2
then, according to the law of transitivity,
   (x+126)2 = 14202

We'll refer to this Equation as  Eq. #5.4.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of
   (x+126)2   is
   (x+126)2/2 =
  (x+126)1 =
   x+126


Now, applying the Square Root Principle to  Eq. #5.4.1  we get:
   x+126 = 14202

Subtract  126  from both sides to obtain:
   x = -126 + √ 14202

Since a square root has two values, one positive and the other negative
   x2 + 252x + 1674 = 0
   has two solutions:
  x = -126 + √ 14202
   or
  x = -126 - √ 14202

Solve Quadratic Equation using the Quadratic Formula

 5.5     Solving    x2+252x+1674 = 0 by the Quadratic Formula .

 
According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :
                                     
            - B  ±  √ B2-4AC
  x =   ————————
                      2A

  In our case,  A   =     1
                      B   =   252
                      C   =  1674

Accordingly,  B2  -  4AC   =
                     63504 - 6696 =
                     56808

Applying the quadratic formula :

               -252 ± √ 56808
   x  =    ————————
                        2

Can  √ 56808 be simplified ?

Yes!   The prime factorization of  56808   is
   2•2•2•3•3•3•263 
To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

56808   =  √ 2•2•2•3•3•3•263   =2•3•√ 1578   =
                ±  6 • √ 1578


  √ 1578   , rounded to 4 decimal digits, is  39.7240
 So now we are looking at:
           x  =  ( -252 ± 6 •  39.724 ) / 2

Two real solutions:

 x =(-252+√56808)/2=-126+3√ 1578 = -6.828

or:

 x =(-252-√56808)/2=-126-3√ 1578 = -245.172

Solving a Single Variable Equation :

 5.6      Solve  :    x-9 = 0 

 
Add  9  to both sides of the equation : 
 
                     x = 9

Three solutions were found :

  1.  x = 9
  2.  x =(-252-√56808)/2=-126-3√ 1578 = -245.172
  3.  x =(-252+√56808)/2=-126+3√ 1578 = -6.828

Why learn this

Latest Related Drills Solved