Enter an equation or problem
Camera input is not recognized!

Solution - Polynomial long division

(x+2)(x6)2
(x+2)*(x-6)^2

Other Ways to Solve

Polynomial long division

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "x2"   was replaced by   "x^2".  1 more similar replacement(s).

Step  1  :

Equation at the end of step  1  :

  (((x3) -  (2•5x2)) +  12x) +  72

Step  2  :

Checking for a perfect cube :

 2.1    x3-10x2+12x+72  is not a perfect cube

Trying to factor by pulling out :

 2.2      Factoring:  x3-10x2+12x+72 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x3-10x2 
Group 2:  12x+72 

Pull out from each group separately :

Group 1:   (x-10) • (x2)
Group 2:   (x+6) • (12)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 2.3    Find roots (zeroes) of :       F(x) = x3-10x2+12x+72
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  72.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,8 ,9 ,12 ,18 ,24 , etc

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      49.00   
     -2     1      -2.00      0.00    x+2 
     -3     1      -3.00      -81.00   
     -4     1      -4.00      -200.00   
     -6     1      -6.00      -576.00   
     -8     1      -8.00     -1176.00   
     -9     1      -9.00     -1575.00   
     -12     1     -12.00     -3240.00   
     -18     1     -18.00     -9216.00   
     -24     1     -24.00     -19800.00   
     1     1      1.00      75.00   
     2     1      2.00      64.00   
     3     1      3.00      45.00   
     4     1      4.00      24.00   
     6     1      6.00      0.00    x-6 
     8     1      8.00      40.00   
     9     1      9.00      99.00   
     12     1      12.00      504.00   
     18     1      18.00      2880.00   
     24     1      24.00      8424.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3-10x2+12x+72 
can be divided by 2 different polynomials,including by  x-6 

Polynomial Long Division :

 2.4    Polynomial Long Division
Dividing :  x3-10x2+12x+72 
                              ("Dividend")
By         :    x-6    ("Divisor")

dividend  x3 - 10x2 + 12x + 72 
- divisor * x2   x3 - 6x2     
remainder  - 4x2 + 12x + 72 
- divisor * -4x1   - 4x2 + 24x   
remainder    - 12x + 72 
- divisor * -12x0     - 12x + 72 
remainder       0

Quotient :  x2-4x-12  Remainder:  0 

Trying to factor by splitting the middle term

 2.5     Factoring  x2-4x-12 

The first term is,  x2  its coefficient is  1 .
The middle term is,  -4x  its coefficient is  -4 .
The last term, "the constant", is  -12 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -12 = -12 

Step-2 : Find two factors of  -12  whose sum equals the coefficient of the middle term, which is   -4 .

     -12   +   1   =   -11
     -6   +   2   =   -4   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -6  and  2 
                     x2 - 6x + 2x - 12

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x-6)
              Add up the last 2 terms, pulling out common factors :
                    2 • (x-6)
Step-5 : Add up the four terms of step 4 :
                    (x+2)  •  (x-6)
             Which is the desired factorization

Multiplying Exponential Expressions :

 2.6    Multiply  (x-6)  by  (x-6) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (x-6)  and the exponents are :
          1 , as  (x-6)  is the same number as  (x-6)1 
 and   1 , as  (x-6)  is the same number as  (x-6)1 
The product is therefore,  (x-6)(1+1) = (x-6)2 

Final result :

  (x + 2) • (x - 6)2

Why learn this

Latest Related Drills Solved