Enter an equation or problem
Camera input is not recognized!

Solution - Polynomial long division

(x2+4)(x3)2
(x^2+4)*(x-3)^2

Other Ways to Solve

Polynomial long division

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "x2"   was replaced by   "x^2".  2 more similar replacement(s).

Step  1  :

Equation at the end of step  1  :

  ((((x4)-(6•(x3)))+13x2)-24x)+36

Step  2  :

Equation at the end of step  2  :

  ((((x4) -  (2•3x3)) +  13x2) -  24x) +  36

Step  3  :

Polynomial Roots Calculator :

 3.1    Find roots (zeroes) of :       F(x) = x4-6x3+13x2-24x+36
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  36.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,9 ,12 ,18 ,36

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      80.00   
     -2     1      -2.00      200.00   
     -3     1      -3.00      468.00   
     -4     1      -4.00      980.00   
     -6     1      -6.00      3240.00   
     -9     1      -9.00     12240.00   
     -12     1     -12.00     33300.00   
     -18     1     -18.00     144648.00   
     -36     1     -36.00     1977300.00   
     1     1      1.00      20.00   
     2     1      2.00      8.00   
     3     1      3.00      0.00    x-3 
     4     1      4.00      20.00   
     6     1      6.00      360.00   
     9     1      9.00      3060.00   
     12     1      12.00     11988.00   
     18     1      18.00     73800.00   
     36     1      36.00     1415700.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x4-6x3+13x2-24x+36 
can be divided with  x-3 

Polynomial Long Division :

 3.2    Polynomial Long Division
Dividing :  x4-6x3+13x2-24x+36 
                              ("Dividend")
By         :    x-3    ("Divisor")

dividend  x4 - 6x3 + 13x2 - 24x + 36 
- divisor * x3   x4 - 3x3       
remainder  - 3x3 + 13x2 - 24x + 36 
- divisor * -3x2   - 3x3 + 9x2     
remainder      4x2 - 24x + 36 
- divisor * 4x1       4x2 - 12x   
remainder      - 12x + 36 
- divisor * -12x0       - 12x + 36 
remainder         0

Quotient :  x3-3x2+4x-12  Remainder:  0 

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = x3-3x2+4x-12

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -12.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,12

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -20.00   
     -2     1      -2.00      -40.00   
     -3     1      -3.00      -78.00   
     -4     1      -4.00      -140.00   
     -6     1      -6.00      -360.00   
     -12     1     -12.00     -2220.00   
     1     1      1.00      -10.00   
     2     1      2.00      -8.00   
     3     1      3.00      0.00    x-3 
     4     1      4.00      20.00   
     6     1      6.00      120.00   
     12     1      12.00      1332.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3-3x2+4x-12 
can be divided with  x-3 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  x3-3x2+4x-12 
                              ("Dividend")
By         :    x-3    ("Divisor")

dividend  x3 - 3x2 + 4x - 12 
- divisor * x2   x3 - 3x2     
remainder      4x - 12 
- divisor * 0x1         
remainder      4x - 12 
- divisor * 4x0       4x - 12 
remainder       0

Quotient :  x2+4  Remainder:  0 

Polynomial Roots Calculator :

 3.5    Find roots (zeroes) of :       F(x) = x2+4

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  4.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      5.00   
     -2     1      -2.00      8.00   
     -4     1      -4.00      20.00   
     1     1      1.00      5.00   
     2     1      2.00      8.00   
     4     1      4.00      20.00   


Polynomial Roots Calculator found no rational roots

Multiplying Exponential Expressions :

 3.6    Multiply  (x-3)  by  (x-3) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (x-3)  and the exponents are :
          1 , as  (x-3)  is the same number as  (x-3)1 
 and   1 , as  (x-3)  is the same number as  (x-3)1 
The product is therefore,  (x-3)(1+1) = (x-3)2 

Final result :

  (x2 + 4) • (x - 3)2

Why learn this

Latest Related Drills Solved