Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(x4+100x2+10000)(x+10)(x10)
(x^4+100x^2+10000)*(x+10)*(x-10)

Step by Step Solution

Step  1  :

Trying to factor as a Difference of Squares :

 1.1      Factoring:  x6-1000000 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  1  is not a square !!

Ruling : Binomial can not be factored as the
difference of two perfect squares

Polynomial Roots Calculator :

 1.2    Find roots (zeroes) of :       F(x) = x6-1000000
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -1000000.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,5 ,8 ,10 ,16 ,20 ,25 ,32 , etc

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00     -999999.00   
     -2     1      -2.00     -999936.00   
     -4     1      -4.00     -995904.00   
     -5     1      -5.00     -984375.00   
     -8     1      -8.00     -737856.00   
     -10     1     -10.00      0.00    x+10 
     -16     1     -16.00     15777216.00   
     -20     1     -20.00     63000000.00   
     -25     1     -25.00     243140625.00   
     -32     1     -32.00     1072741824.00   
     1     1      1.00     -999999.00   
     2     1      2.00     -999936.00   
     4     1      4.00     -995904.00   
     5     1      5.00     -984375.00   
     8     1      8.00     -737856.00   
     10     1      10.00      0.00    x-10 
     16     1      16.00     15777216.00   
     20     1      20.00     63000000.00   
     25     1      25.00     243140625.00   
     32     1      32.00     1072741824.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x6-1000000 
can be divided by 2 different polynomials,including by  x-10 

Polynomial Long Division :

 1.3    Polynomial Long Division
Dividing :  x6-1000000 
                              ("Dividend")
By         :    x-10    ("Divisor")

dividend  x6           - 1000000 
- divisor * x5   x6 - 10x5           
remainder    10x5         - 1000000 
- divisor * 10x4     10x5 - 100x4         
remainder      100x4       - 1000000 
- divisor * 100x3       100x4 - 1000x3       
remainder        1000x3     - 1000000 
- divisor * 1000x2         1000x3 - 10000x2     
remainder          10000x2   - 1000000 
- divisor * 10000x1           10000x2 - 100000x   
remainder            100000x - 1000000 
- divisor * 100000x0             100000x - 1000000 
remainder             0

Quotient :  x5+10x4+100x3+1000x2+10000x+100000  Remainder:  0 

Polynomial Roots Calculator :

 1.4    Find roots (zeroes) of :       F(x) = x5+10x4+100x3+1000x2+10000x+100000

     See theory in step 1.2
In this case, the Leading Coefficient is  1  and the Trailing Constant is  100000.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,5 ,8 ,10 ,16 ,20 ,25 ,32 , etc

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00     90909.00   
     -2     1      -2.00     83328.00   
     -4     1      -4.00     71136.00   
     -5     1      -5.00     65625.00   
     -8     1      -8.00     40992.00   
     -10     1     -10.00      0.00    x+10 
     -16     1     -16.00     -606816.00   
     -20     1     -20.00     -2100000.00   
     -25     1     -25.00     -6946875.00   
     -32     1     -32.00     -25541472.00   
     1     1      1.00     111111.00   
     2     1      2.00     124992.00   
     4     1      4.00     165984.00   
     5     1      5.00     196875.00   
     8     1      8.00     368928.00   
     10     1      10.00     600000.00   
     16     1      16.00     2629536.00   
     20     1      20.00     6300000.00   
     25     1      25.00     16209375.00   
     32     1      32.00     48760992.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x5+10x4+100x3+1000x2+10000x+100000 
can be divided with  x+10 

Polynomial Long Division :

 1.5    Polynomial Long Division
Dividing :  x5+10x4+100x3+1000x2+10000x+100000 
                              ("Dividend")
By         :    x+10    ("Divisor")

dividend  x5 + 10x4 + 100x3 + 1000x2 + 10000x + 100000 
- divisor * x4   x5 + 10x4         
remainder      100x3 + 1000x2 + 10000x + 100000 
- divisor * 0x3             
remainder      100x3 + 1000x2 + 10000x + 100000 
- divisor * 100x2       100x3 + 1000x2     
remainder          10000x + 100000 
- divisor * 0x1             
remainder          10000x + 100000 
- divisor * 10000x0           10000x + 100000 
remainder           0

Quotient :  x4+100x2+10000  Remainder:  0 

Trying to factor by splitting the middle term

 1.6     Factoring  x4+100x2+10000 

The first term is,  x4  its coefficient is  1 .
The middle term is,  +100x2  its coefficient is  100 .
The last term, "the constant", is  +10000 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 10000 = 10000 

Step-2 : Find two factors of  10000  whose sum equals the coefficient of the middle term, which is   100 .

     -10000   +   -1   =   -10001
     -5000   +   -2   =   -5002
     -2500   +   -4   =   -2504
     -2000   +   -5   =   -2005
     -1250   +   -8   =   -1258
     -1000   +   -10   =   -1010


For tidiness, printing of 44 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (x4 + 100x2 + 10000) • (x + 10) • (x - 10)

Why learn this

Latest Related Drills Solved