Enter an equation or problem
Camera input is not recognized!

Solution - Reducing fractions to their lowest terms

(x4-5x3-30x2-45)/(x2)
(x^4-5x^3-30x^2-45)/(x^2)

Step by Step Solution

Step  1  :

            45
 Simplify   ——
            x2

Equation at the end of step  1  :

                    45           
  ((((x2) -  4x) -  ——) -  x) -  30
                    x2           

Step  2  :

Rewriting the whole as an Equivalent Fraction :

 2.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  x2  as the denominator :

                x2 - 4x     (x2 - 4x) • x2
     x2 - 4x =  ———————  =  ——————————————
                   1              x2      

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Step  3  :

Pulling out like terms :

 3.1     Pull out like factors :

   x2 - 4x  =   x • (x - 4) 

Adding fractions that have a common denominator :

 3.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 x • (x-4) • x2 - (45)     x4 - 4x3 - 45
 —————————————————————  =  —————————————
          x2                    x2      

Equation at the end of step  3  :

   (x4 - 4x3 - 45)          
  (——————————————— -  x) -  30
         x2                 

Step  4  :

Rewriting the whole as an Equivalent Fraction :

 4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

         x     x • x2
    x =  —  =  ——————
         1       x2  

Polynomial Roots Calculator :

 4.2    Find roots (zeroes) of :       F(x) = x4 - 4x3 - 45
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -45.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3 ,5 ,9 ,15 ,45

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -40.00   
     -3     1      -3.00      144.00   
     -5     1      -5.00      1080.00   
     -9     1      -9.00      9432.00   
     -15     1     -15.00     64080.00   
     -45     1     -45.00     4465080.00   
     1     1      1.00      -48.00   
     3     1      3.00      -72.00   
     5     1      5.00      80.00   
     9     1      9.00      3600.00   
     15     1      15.00     37080.00   
     45     1      45.00     3736080.00   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 4.3       Adding up the two equivalent fractions

 (x4-4x3-45) - (x • x2)     x4 - 5x3 - 45
 ——————————————————————  =  —————————————
           x2                    x2      

Equation at the end of step  4  :

  (x4 - 5x3 - 45)    
  ——————————————— -  30
        x2           

Step  5  :

Rewriting the whole as an Equivalent Fraction :

 5.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

          30     30 • x2
    30 =  ——  =  ———————
          1        x2   

Polynomial Roots Calculator :

 5.2    Find roots (zeroes) of :       F(x) = x4 - 5x3 - 45

     See theory in step 4.2
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -45.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3 ,5 ,9 ,15 ,45

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -39.00   
     -3     1      -3.00      171.00   
     -5     1      -5.00      1205.00   
     -9     1      -9.00     10161.00   
     -15     1     -15.00     67455.00   
     -45     1     -45.00     4556205.00   
     1     1      1.00      -49.00   
     3     1      3.00      -99.00   
     5     1      5.00      -45.00   
     9     1      9.00      2871.00   
     15     1      15.00     33705.00   
     45     1      45.00     3644955.00   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 5.3       Adding up the two equivalent fractions

 (x4-5x3-45) - (30 • x2)     x4 - 5x3 - 30x2 - 45
 ———————————————————————  =  ————————————————————
           x2                         x2         

Checking for a perfect cube :

 5.4    x4 - 5x3 - 30x2 - 45  is not a perfect cube

Trying to factor by pulling out :

 5.5      Factoring:  x4 - 5x3 - 30x2 - 45 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -30x2 - 45 
Group 2:  -5x3 + x4 

Pull out from each group separately :

Group 1:   (2x2 + 3) • (-15)
Group 2:   (x - 5) • (x3)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 5.6    Find roots (zeroes) of :       F(x) = x4 - 5x3 - 30x2 - 45

     See theory in step 4.2
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -45.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3 ,5 ,9 ,15 ,45

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -69.00   
     -3     1      -3.00      -99.00   
     -5     1      -5.00      455.00   
     -9     1      -9.00      7731.00   
     -15     1     -15.00     60705.00   
     -45     1     -45.00     4495455.00   
     1     1      1.00      -79.00   
     3     1      3.00      -369.00   
     5     1      5.00      -795.00   
     9     1      9.00      441.00   
     15     1      15.00     26955.00   
     45     1      45.00     3584205.00   


Polynomial Roots Calculator found no rational roots

Final result :

  x4 - 5x3 - 30x2 - 45
  ————————————————————
           x2         

Why learn this

Latest Related Drills Solved