Enter an equation or problem
Camera input is not recognized!

Solution - Nonlinear equations

x=0.00005.0000i
x=0.0000-5.0000i
x=0.0000+5.0000i
x=0.0000+5.0000i

Other Ways to Solve

Nonlinear equations

Step by Step Solution

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                     x^2-(-25)=0 

Step by step solution :

Step  1  :

Polynomial Roots Calculator :

 1.1    Find roots (zeroes) of :       F(x) = x2+25
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  25.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,5 ,25

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      26.00   
     -5     1      -5.00      50.00   
     -25     1     -25.00      650.00   
     1     1      1.00      26.00   
     5     1      5.00      50.00   
     25     1      25.00      650.00   


Polynomial Roots Calculator found no rational roots

Equation at the end of step  1  :

  x2 + 25  = 0 

Step  2  :

Solving a Single Variable Equation :

 2.1      Solve  :    x2+25 = 0 

 
Subtract  25  from both sides of the equation : 
 
                     x2 = -25
 
 
When two things are equal, their square roots are equal. Taking the square root of the two sides of the equation we get:  
 
                     x  =  ± √ -25  

 
In Math,  i  is called the imaginary unit. It satisfies   i2  =-1. Both   i   and   -i   are the square roots of   -1 

Accordingly,  √ -25  =
                    √ -1• 25   =
                    √ -1 •√  25   =
                    i •  √ 25

Can  √ 25 be simplified ?

Yes!   The prime factorization of  25   is
   5•5 
To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

25   =  √ 5•5   =
                ±  5 • √ 1   =
                ±  5


The equation has no real solutions. It has 2 imaginary, or complex solutions.

                      x=  0.0000 + 5.0000
                      x=  0.0000 - 5.0000

Two solutions were found :

  1.   x=  0.0000 - 5.0000
  2.   x=  0.0000 + 5.0000

Why learn this

Latest Related Drills Solved