Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(x3)(x6)(x9)
(x-3)*(x-6)*(x-9)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((x3) -  (2•32x2)) +  99x) -  162

Step  2  :

Checking for a perfect cube :

 2.1    x3-18x2+99x-162  is not a perfect cube

Trying to factor by pulling out :

 2.2      Factoring:  x3-18x2+99x-162 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x3-162 
Group 2:  -18x2+99x 

Pull out from each group separately :

Group 1:   (x3-162) • (1)
Group 2:   (2x-11) • (-9x)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 2.3    Find roots (zeroes) of :       F(x) = x3-18x2+99x-162
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -162.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,6 ,9 ,18 ,27 ,54 ,81 ,162

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -280.00   
     -2     1      -2.00      -440.00   
     -3     1      -3.00      -648.00   
     -6     1      -6.00     -1620.00   
     -9     1      -9.00     -3240.00   
     -18     1     -18.00     -13608.00   
     -27     1     -27.00     -35640.00   
     -54     1     -54.00     -215460.00   
     -81     1     -81.00     -657720.00   
     -162     1     -162.00     -4740120.00   
     1     1      1.00      -80.00   
     2     1      2.00      -28.00   
     3     1      3.00      0.00    x-3 
     6     1      6.00      0.00    x-6 
     9     1      9.00      0.00    x-9 
     18     1      18.00      1620.00   
     27     1      27.00      9072.00   
     54     1      54.00     110160.00   
     81     1      81.00     421200.00   
     162     1     162.00     3795012.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3-18x2+99x-162 
can be divided by 3 different polynomials,including by  x-9 

Polynomial Long Division :

 2.4    Polynomial Long Division
Dividing :  x3-18x2+99x-162 
                              ("Dividend")
By         :    x-9    ("Divisor")

dividend  x3 - 18x2 + 99x - 162 
- divisor * x2   x3 - 9x2     
remainder  - 9x2 + 99x - 162 
- divisor * -9x1   - 9x2 + 81x   
remainder      18x - 162 
- divisor * 18x0       18x - 162 
remainder       0

Quotient :  x2-9x+18  Remainder:  0 

Trying to factor by splitting the middle term

 2.5     Factoring  x2-9x+18 

The first term is,  x2  its coefficient is  1 .
The middle term is,  -9x  its coefficient is  -9 .
The last term, "the constant", is  +18 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 18 = 18 

Step-2 : Find two factors of  18  whose sum equals the coefficient of the middle term, which is   -9 .

     -18   +   -1   =   -19
     -9   +   -2   =   -11
     -6   +   -3   =   -9   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -6  and  -3 
                     x2 - 6x - 3x - 18

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x-6)
              Add up the last 2 terms, pulling out common factors :
                    3 • (x-6)
Step-5 : Add up the four terms of step 4 :
                    (x-3)  •  (x-6)
             Which is the desired factorization

Final result :

  (x - 3) • (x - 6) • (x - 9)

Why learn this

Latest Related Drills Solved