Enter an equation or problem
Camera input is not recognized!

Solution - Polynomial long division

x=8
x=8

Other Ways to Solve

Polynomial long division

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  (((x3) -  (23•3x2)) +  192x) -  512  = 0 

Step  2  :

Checking for a perfect cube :

 2.1    x3-24x2+192x-512  is not a perfect cube

Trying to factor by pulling out :

 2.2      Factoring:  x3-24x2+192x-512 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x3-24x2 
Group 2:  192x-512 

Pull out from each group separately :

Group 1:   (x-24) • (x2)
Group 2:   (3x-8) • (64)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 2.3    Find roots (zeroes) of :       F(x) = x3-24x2+192x-512
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -512.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32 ,64 ,128 ,256 ,512

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -729.00   
     -2     1      -2.00     -1000.00   
     -4     1      -4.00     -1728.00   
     -8     1      -8.00     -4096.00   
     -16     1     -16.00     -13824.00   
     -32     1     -32.00     -64000.00   
     -64     1     -64.00     -373248.00   
     -128     1     -128.00     -2515456.00   
     -256     1     -256.00     -18399744.00   
     -512     1     -512.00     -140608000.00   
     1     1      1.00      -343.00   
     2     1      2.00      -216.00   
     4     1      4.00      -64.00   
     8     1      8.00      0.00    x-8 
     16     1      16.00      512.00   
     32     1      32.00     13824.00   
     64     1      64.00     175616.00   
     128     1     128.00     1728000.00   
     256     1     256.00     15252992.00   
     512     1     512.00     128024064.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3-24x2+192x-512 
can be divided with  x-8 

Polynomial Long Division :

 2.4    Polynomial Long Division
Dividing :  x3-24x2+192x-512 
                              ("Dividend")
By         :    x-8    ("Divisor")

dividend  x3 - 24x2 + 192x - 512 
- divisor * x2   x3 - 8x2     
remainder  - 16x2 + 192x - 512 
- divisor * -16x1   - 16x2 + 128x   
remainder      64x - 512 
- divisor * 64x0       64x - 512 
remainder       0

Quotient :  x2-16x+64  Remainder:  0 

Trying to factor by splitting the middle term

 2.5     Factoring  x2-16x+64 

The first term is,  x2  its coefficient is  1 .
The middle term is,  -16x  its coefficient is  -16 .
The last term, "the constant", is  +64 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 64 = 64 

Step-2 : Find two factors of  64  whose sum equals the coefficient of the middle term, which is   -16 .

     -64   +   -1   =   -65
     -32   +   -2   =   -34
     -16   +   -4   =   -20
     -8   +   -8   =   -16   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -8  and  -8 
                     x2 - 8x - 8x - 64

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x-8)
              Add up the last 2 terms, pulling out common factors :
                    8 • (x-8)
Step-5 : Add up the four terms of step 4 :
                    (x-8)  •  (x-8)
             Which is the desired factorization

Multiplying Exponential Expressions :

 2.6    Multiply  (x-8)  by  (x-8) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (x-8)  and the exponents are :
          1 , as  (x-8)  is the same number as  (x-8)1 
 and   1 , as  (x-8)  is the same number as  (x-8)1 
The product is therefore,  (x-8)(1+1) = (x-8)2 

Multiplying Exponential Expressions :

 2.7    Multiply  (x-8)2   by  (x-8) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (x-8)  and the exponents are :
          2
 and   1 , as  (x-8)  is the same number as  (x-8)1 
The product is therefore,  (x-8)(2+1) = (x-8)3 

Equation at the end of step  2  :

  (x - 8)3  = 0 

Step  3  :

Solving a Single Variable Equation :

 3.1      Solve  :    (x-8)3 = 0 

 
 (x-8) 3 represents, in effect, a product of 3 terms which is equal to zero

For the product to be zero, at least one of these terms must be zero. Since all these terms are equal to each other, it actually means :   x-8  = 0

Add  8  to both sides of the equation : 
 
                     x = 8

Supplement : Solving Quadratic Equation Directly

Solving    x2-16x+64  = 0   directly 

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Parabola, Finding the Vertex :

 4.1      Find the Vertex of   y = x2-16x+64

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 1 , is positive (greater than zero). 

 
Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 
Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 
For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is   8.0000  

 
Plugging into the parabola formula   8.0000  for  x  we can calculate the  y -coordinate : 
 
 y = 1.0 * 8.00 * 8.00 - 16.0 * 8.00 + 64.0
or   y = 0.000

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = x2-16x+64
Vertex at  {x,y} = { 8.00, 0.00} 
x-Intercept (Root) :
One Root at  {x,y}={ 8.00, 0.00} 
Note that the root coincides with
the Vertex and the Axis of Symmetry
coinsides with the line  x = 0 

Solve Quadratic Equation by Completing The Square

 4.2     Solving   x2-16x+64 = 0 by Completing The Square .

 
Subtract  64  from both side of the equation :
   x2-16x = -64

Now the clever bit: Take the coefficient of  x , which is  16 , divide by two, giving  8 , and finally square it giving  64 

Add  64  to both sides of the equation :
  On the right hand side we have :
   -64  +  64    or,  (-64/1)+(64/1) 
  The common denominator of the two fractions is  1   Adding  (-64/1)+(64/1)  gives  0/1 
  So adding to both sides we finally get :
   x2-16x+64 = 0

Adding  64  has completed the left hand side into a perfect square :
   x2-16x+64  =
   (x-8) • (x-8)  =
  (x-8)2
Things which are equal to the same thing are also equal to one another. Since
   x2-16x+64 = 0 and
   x2-16x+64 = (x-8)2
then, according to the law of transitivity,
   (x-8)2 = 0

We'll refer to this Equation as  Eq. #4.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of
   (x-8)2   is
   (x-8)2/2 =
  (x-8)1 =
   x-8


Now, applying the Square Root Principle to  Eq. #4.2.1  we get:
   x-8 = 0

Add  8  to both sides to obtain:
   x = 8 + √ 0
The square root of zero is zero

This quadratic equation has one solution only. That's because adding zero is the same as subtracting zero.

The solution is:
   x  =  8 

Solve Quadratic Equation using the Quadratic Formula

 4.3     Solving    x2-16x+64 = 0 by the Quadratic Formula .

 
According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :
                                     
            - B  ±  √ B2-4AC
  x =   ————————
                      2A

  In our case,  A   =     1
                      B   =   -16
                      C   =   64

Accordingly,  B2  -  4AC   =
                     256 - 256 =
                     0

Applying the quadratic formula :

               16 ± √ 0
   x  =    —————
                    2

The square root of zero is zero

This quadratic equation has one solution only. That's because adding zero is the same as subtracting zero.

The solution is:
  x = 16 / 2 = 8

One solution was found :

                   x = 8

Why learn this

Latest Related Drills Solved