Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(x2+2x+6)(x5)
(x^2+2x+6)*(x-5)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((x3) -  3x2) -  4x) -  30

Step  2  :

Checking for a perfect cube :

 2.1    x3-3x2-4x-30  is not a perfect cube

Trying to factor by pulling out :

 2.2      Factoring:  x3-3x2-4x-30 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -4x-30 
Group 2:  x3-3x2 

Pull out from each group separately :

Group 1:   (2x+15) • (-2)
Group 2:   (x-3) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 2.3    Find roots (zeroes) of :       F(x) = x3-3x2-4x-30
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -30.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,5 ,6 ,10 ,15 ,30

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -30.00   
     -2     1      -2.00      -42.00   
     -3     1      -3.00      -72.00   
     -5     1      -5.00      -210.00   
     -6     1      -6.00      -330.00   
     -10     1     -10.00     -1290.00   
     -15     1     -15.00     -4020.00   
     -30     1     -30.00     -29610.00   
     1     1      1.00      -36.00   
     2     1      2.00      -42.00   
     3     1      3.00      -42.00   
     5     1      5.00      0.00    x-5 
     6     1      6.00      54.00   
     10     1      10.00      630.00   
     15     1      15.00      2610.00   
     30     1      30.00     24150.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3-3x2-4x-30 
can be divided with  x-5 

Polynomial Long Division :

 2.4    Polynomial Long Division
Dividing :  x3-3x2-4x-30 
                              ("Dividend")
By         :    x-5    ("Divisor")

dividend  x3 - 3x2 - 4x - 30 
- divisor * x2   x3 - 5x2     
remainder    2x2 - 4x - 30 
- divisor * 2x1     2x2 - 10x   
remainder      6x - 30 
- divisor * 6x0       6x - 30 
remainder       0

Quotient :  x2+2x+6  Remainder:  0 

Trying to factor by splitting the middle term

 2.5     Factoring  x2+2x+6 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +2x  its coefficient is  2 .
The last term, "the constant", is  +6 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 6 = 6 

Step-2 : Find two factors of  6  whose sum equals the coefficient of the middle term, which is   2 .

     -6   +   -1   =   -7
     -3   +   -2   =   -5
     -2   +   -3   =   -5
     -1   +   -6   =   -7
     1   +   6   =   7
     2   +   3   =   5
     3   +   2   =   5
     6   +   1   =   7


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (x2 + 2x + 6) • (x - 5)

Why learn this

Latest Related Drills Solved