Enter an equation or problem
Camera input is not recognized!

Solution - Factoring multivariable polynomials

(xc)(x2+xc+c2)
(x-c)*(x^2+xc+c^2)

Step by Step Solution

Step  1  :

Trying to factor as a Difference of Cubes:

 1.1      Factoring:  x3-c3 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  x3 is the cube of   x1

Check :  c3 is the cube of   c1

Factorization is :
             (x - c)  •  (x2 + xc + c2) 

Trying to factor a multi variable polynomial :

 1.2    Factoring    x2 + xc + c2 

Try to factor this multi-variable trinomial using trial and error 

 
Factorization fails

Final result :

  (x - c) • (x2 + xc + c2)

Why learn this

Latest Related Drills Solved