Enter an equation or problem
Camera input is not recognized!

Solution - Factoring binomials using the difference of squares

(x+5)(x25x+25)
(x+5)*(x^2-5x+25)

Step by Step Solution

Step  1  :

Trying to factor as a Sum of Cubes :

 1.1      Factoring:  x3+125 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  125  is the cube of   5 
Check :  x3 is the cube of   x1

Factorization is :
             (x + 5)  •  (x2 - 5x + 25) 

Trying to factor by splitting the middle term

 1.2     Factoring  x2 - 5x + 25 

The first term is,  x2  its coefficient is  1 .
The middle term is,  -5x  its coefficient is  -5 .
The last term, "the constant", is  +25 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 25 = 25 

Step-2 : Find two factors of  25  whose sum equals the coefficient of the middle term, which is   -5 .

     -25   +   -1   =   -26
     -5   +   -5   =   -10
     -1   +   -25   =   -26
     1   +   25   =   26
     5   +   5   =   10
     25   +   1   =   26


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (x + 5) • (x2 - 5x + 25)

Why learn this

Latest Related Drills Solved